
TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Hybrid Quantum Classical
Algorithms for Optimization and

Applications in Finance

DIPLOMA THESIS

Andreas Stratakis

THESIS COMMITTEE

Associate Professor Dimitris G. Angelakis
Associate Professor Vasilis Samoladas

Professor Michail G. Lagoudakis

Chania October 2023



Abstract

This thesis delves into the prominent topic of applying quantum computing to solving
optimization problems and recent applications in the financial sector. We set the stage
by defining the framework of quantum computation. This includes the building blocks
of a quantum computer, such as the quantum bits and gates, but also the postulates
of quantum mechanics, that determine their behaviour. Next, we dive deep into quan-
tum approaches for binary optimization and the most popular hybrid algorithms for such
problems, namely the Quantum Approximate Optimization Algorithm (QAOA) and the
Hardware Efficient Variational Quantum Algorithm (VQA), as well as Quantum Anneal-
ing. We implement these algorithms to solve fundamental problems in computer science,
such as the “Subset Sum” and the “Travelling Salesman Problem”, as precursors to the
intricate challenge of applying them next to the financial world for portfolio optimization.
In addition to formulating and adapting these problems to be amenable to quantum ap-
proaches, we present comprehensive benchmarks in cloud quantum hardware. In the last
part of the thesis, we present a novel approach for solving portfolio optimization tailored
for near-term quantum computers based on quantum amplitude encoding. This method
transcends mere theoretical or ‘toy’ models, offering potential for handling real-world
scale challenges specific to this domain. Our evaluations encompass predefined test sets
and real-world data from the S&P100 and S&P500 financial indices.
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Chapter 1

Introduction

“Nature is not classical, dammit,
and if you want to make a
simulation of nature, you’d better
make it quantum mechanical.”
—— Richard Feynman

Since the dawn of civilization people tried to provide explanations to certain phenomena
of nature, from simple but unpredictable like storms and droughts, to complicated yet
predictable like the movement of planets. There seems to be some innate motivation for
people to try to find patterns in very complicated systems and try to replicate them.

This let to the creation of the first ever computer, so called “Antikythera mechanism”
[1]. This ancient Greek device was a hand-powered mechanical analogue computer. It
was capable of predicting astronomical positions and eclipses with remarkable accuracy
decades in advance. Additionally, it was used to keep track of the four-year cycle of the
ancient Olympic Games. It is still considered an engineering marvel, because of the lack of
technology instruments that we take today as granted. This shows the curious nature of
humans, being able to watch, find patterns and predict the future of complex phenomena.

Figure 1.1: An accurate reconstruction of the internal components of Antikythera mech-
anism. The front panel simulates the positions of the plantes, while the rear panel shows
the name of the month and the next eclipse type.
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Fast forward a few eons, the invention of the transistor revolutionized technology and
science. Transistors quickly evolved into smaller sizes, allowing computational power to
increase exponentially in a phenomenon now referred to as Moore’s Law [2]. This law,
although more accurately described as an observation, states that the number of transis-
tors doubles approximately every two years while their size halves. Suddenly, transistors
were used everywhere, from our computers and phones to virtually every electronic de-
vice. Moreover, it spurred the creation of new fields in computer science, such as artificial
intelligence, etc.

Despite the transistor being arguably one of the most important inventions in the history
of humanity, in recent years Moore’s law seems to be stagnating as the transistor size
approaches its physical limit. At very small scales, quantum mechanics begins to domi-
nate, introducing uncertainty in a transistor’s behavior as electrons can quantum tunnel
through the transistor’s gate, resulting in incorrect output. This stagnation in the evo-
lution of classical computational power implies an increasing difficulty in leveraging this
power to address challenges in emerging fields of science, such as simulating molecules,
for example.

Quantum computers, grounded in the fundamental physics of reality, hold the promise
of potentially revolutionizing science once again. Computation utilizing the principles of
quantum mechanics was first proposed in the early 1980s [3, 4, 5]. Since then, the field of
quantum computation and simulation has made significant progress, built on the premise
that quantum computers have more computational power than classical computers and
the promise to solve some difficult problems more efficiently. The most important compu-
tational tasks with expected quantum computational advantages are prime factorization
[6], database search [7, 8] and solving systems of linear equations [9]. Efficiently solving
these tasks will have tremendous impact on science and industry. Another candidate
for computational advantage is the use of quantum computers for analogue simulation
of a quantum mechanical system. This could potentially be used to simulate molecules,
materials and other complex systems, revolutionising medicine and industry by creating
new drugs e.t.c.

Right now, billions of dollars are being invested in quantum computing. The primary
motivation for this investment is the proven exponential speed-up in breaking RSA [10]
cryptosystem. Governments around the world employ a strategic method known as SNDL
(Store Now, Decrypt Later), where they intercept large amounts of data including classi-
fied military documents and unpublished research, among other things. The underlying
notion is that information from the past may hold significant importance even many years
into the future. This concept has ignited a new race to develop a fault-tolerant quantum
computer. Currently, state-of-the-art quantum computers are noisy and possess a lim-
ited number of qubits, ranging from hundreds to thousands. Consequently, considerable
research is being conducted in the NISQ (Noisy Intermediate-Scale Quantum) computing
era. Right now there are several companies competing in the development of high quality
scalable quantum computers. The most notable are IONQ, IBM, Google, Rigetti and
Xanadu.
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Figure 1.2: Evolution of computers

Thesis Outline

Chapter 1. This thesis starts by introducing the basic principles of quantum computa-
tion. It begins with an overview of the crucial mathematical background. Additionally,
this chapter highlights the essential components of quantum computation, such as quan-
tum gates, and examines quantum entanglement.

Chapter 2. This chapter delves into quantum optimization. It starts by introducing
the Quadratic Unconstrained Binary Optimization (QUBO) classification of problems.
Then it introduces quantum annealing and its relation to the Ising model. It also shows
how a QUBO problem can be encoded into an Ising Hamiltonian. Finally this chapter
introduces the two main Hybrid optimization algorithms, their generic implementation
and their pros and cons.

Chapter 3. In this chapter the theory is tested in 2 very popular problems in Computer
Science, which are Subset Sum and Travelling Salesman Problem. Next the algorithms
are compared with each other to see any potential limitations.

Chapter 4. This chapter delves with the problem of Portfolio Optimization. It first
starts by doing a brief reference to relevant problems. Then it continues by formulating
the problem, transforming into a QUBO problem and encoding into a Quantum An-
nealer. The cost function and it’s constraints are benchmarked individually to test the
theory and find any potential limitations. After this a large scale problem that fits real
world standards is executed on a Hybrid Quantum Annealer from D-wave. Finally a new
method is proposed that is problem specific and it is also benchmarked on real world
data and problem size.
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1.1 What is a qubit?

The qubit ”quantum bit” is the fundamental unit of quantum information. This term
was first introduced by Benjamin Schumacher, an American physicist, in the late 1990s.
The word ”bit” is an abbreviation for ”binary digit”. It was coined in the early 1940s
by American mathematician and logician Claude Shannon. In information theory, a bit
is the smallest unit of data, representing either a 0 or a 1 in binary code. This binary
system is the basis for classical computing, where information is processed using bits and
operations like logical gates.

1.2 Mathematical representation of the qubit

Classical bits can be either 0 or 1. Qubits, on the other hand, can be |0⟩ or |1⟩ or any
superposition between |0⟩ and |1⟩. Here the symbol |∗⟩) was introduced by Paul Dirac
in 1958 to describe quantum states. Mathematically this is a vector of complex values.

In classical systems, the space of states is a set that contains all the possible states. For
example, the space of states for a bit is {0, 1}. In quantum systems, however, the space
of states is a vector space.

A quantum state is depicted by a vector in a complex vector space known as the Hilbert
space, symbolized by H. While we’re not delving into the mathematical specifics of a
Hilbert space at this moment, it’s useful to envision it as an extension of the familiar
Euclidean vector space, capable of spanning either finite or infinite dimensions.

In quantum mechanics, the vectors that compose the Hilbert space are represented by
kets. The simplest Hilbert space we can study regards the two-level quantum systems,
where the vector states |0⟩ and |1⟩ form an orthonomal basis for this vector space and
are defined as:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
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1.3 Visualization of the qubit

Qubits can be realized using various physical systems, one of which is based on quantum
entities with two distinct energy levels. A prime candidate for this realization is an elec-
tron in a hydrogen atom, which possesses numerous discrete energy orbitals. By isolating
the two lowest energy levels, namely the ground state and the first excited state, we can
effectively construct a qubit. In this model, the ground state, which is the lowest energy
state an electron naturally occupies, corresponds to the |0⟩ state. Conversely, the first
excited state, which is a state with a higher energy level, represents the |1⟩ state in the
qubit representation.

Quantum transitions between these states can occur through energy absorption or emis-
sion equal to the energy difference between these two states, facilitating transitions from
|0⟩ to |1⟩ states and vice-versa. This energy differential serves as a fundamental mecha-
nism for quantum bit operations, forming the basis for quantum computing applications.
By employing the hydrogen atom as a model, with a singular electron orbiting its nucleus,
we can better visualize and understand these quantum transitions and the underlying
principles of qubits.

Figure 1.3: Ground state of Hydrogen
atom (state |0⟩)

Figure 1.4: Excited state of Hydrogen
atom (state |1⟩)

The quantum spin is the second and more frequently used system for qubits. Originating
from particle physics, spin is a characteristic associated with fundamental particles. One
can imagine the quantum state of the spin as an arrow pointing in a specific direction.
This arrow can be represented as a point on the surface of a three-dimensional sphere.

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩

Within this framework, the parameters θ and ϕ are confined to the ranges 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π, respectively. This graphical representation, denoted as the Bloch sphere
(see figure 1.5) in homage to physicist Felix Bloch. Each quantum state of a single qubit
can be mapped in the surface of the Bloch shpere. Here orthogonal states are placed
antidiametrically, as shown in figure 1.6.
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Figure 1.5: Bloch Sphere

The Bloch Sphere is a nice tool to visualize the qubit, but it is limited to only a single
qubit with single qubit gates available. Qubit gates result in rotations around the 3
axes, as we will discuss later. Trying to visualize 2 or more qubit systems is impossible
as higher dimensional hyperspheres are required to do so. Therefore, it’s just easier to
comprehend the mathematics that form this theory rather than trying to visualize such
systems.

(a) State |0⟩ (b) State |1⟩

Figure 1.6: Bloch vector of states |0⟩ and |1⟩
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1.4 Basic Linear Algebra

Definition 1 (Dot product) The dot product between two vectors aT = [a1, a2, . . . , an]
and bT = [b1, b2, . . . , bn] is defined by the equation:

aT · b =
n∑

i=1

aibi (1.1)

Definition 2 (Linear combination) A vector |u⟩ ∈ Cn is a linear combination of
vectors |u1⟩, |u2⟩, · · · , |un⟩, if |u⟩ can be expressed as

|u⟩ =
n∑
i

ci |ui⟩ (1.2)

where ci ∈ C

Definition 3 (Linear Independence) A set of non zero vectors |u1⟩, |u2⟩, · · · , |un⟩ ∈
Cn are linearly independent if

a1 |u1⟩+ a2 |u2⟩+ · · ·+ aN |un⟩ = 0 ⇔ ai = 0 ∀ i = 1, 2, · · · , n (1.3)

Definition 4 (Spanning set) A spanning set for a vector space V is a set of vectors
|u1⟩, |u2⟩, · · · , |un⟩ ∈ Cn from V , such that any other vector |u⟩ ∈ Cn can be written as
a linear combination |u⟩ =

∑
i ci |ui⟩ of that set of vectors.

Definition 5 (Basis) A basis is a set of vectors that are a spanning set and linearly
independent.

Definition 6 (Unit vector) A unit vector or normalized vector, is a vector |u⟩ in
Cn that satisfies

∥|u⟩∥2 = 1 ≡ u†u = 1.

Definition 7 (Orthonomal basis) An orthonomal basis is a basis whose vectors are
all unit vectors and orthogonal to each other.

It becomes evident that the vectors |0⟩ and |1⟩ form an orthonormal basis in C2. This
basis is frequently adopted in quantum computation and is termed the computational
basis. Its widespread usage can be attributed to its natural association with the classical
bits 0 and 1. It’s important to recognize that while a vector space may have multiple
spanning sets, it doesn’t imply a unique basis. Though there exist numerous bases in
quantum computation, the computational basis remains predominantly prevalent.

A distinct contrast between a qubit and a classical bit is the ability of the qubit to exist in
multiple states simultaneously. This unique behavior, exclusive to quantum mechanics,
is termed superposition. Mathematically, this concept of superposition corresponds to
forming a linear combination of states:

|ψ⟩ = α |0⟩+ β |1⟩ =
[
α
β

]
∈ C2
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In quantum mechanics, the values α and β are understood as complex probability
amplitudes. Their designation hints at a relationship to probabilities, though this link
might not be immediately evident. While α and β by themselves lack experimental impli-
cations, their magnitudes carry significant meaning. Specifically, when a qubit undergoes
measurement, it manifests in state |0⟩ with probability |α|2 = α∗α and in state |1⟩ with
probability |β|2 = β∗β. This inherent probabilistic behavior is encapsulated by the Born
rule, emphasizing the stochastic nature of quantum mechanics. Before a measurement,
the entirety of the qubit’s potential states is described by |ψ⟩. Yet, upon measurement,
the state collapses to a single outcome, with the likelihoods determined by the square
of the probability amplitudes’ magnitudes. This also implies that the probabilities must
sum up to 1, meaning that:

|α|2 + |β|2 = 1.

In a more generalized context, any quantum state within Cn is given by

|ψ⟩ =
n∑

i=1

ci |ui⟩

where vectors like |u1⟩, |u2⟩, and so forth up to |un⟩, establish an orthonormal basis in
Cn. The respective probabilities, derived from these vectors, constitute a valid probability
distribution, ensuring their collective sum equals one:

n∑
i=1

|ci|2 = c∗i ci = 1.

From a geometric standpoint, we can infer that a quantum system’s state represents a
normalized vector, having a magnitude of 1, in the milti-dimensional Hilbert space of
all basis states.

Throughout our exploration, it’s evident that ”ket” vectors emerge as complex vectors.
This suggests each ket possesses a corresponding complex conjugate, termed ”bra” (orig-
inating from ’braket’). If we envision a ket as a vertical column vector, its bra will be a
horizontal row vector.

|ψ⟩ =
[
a
b

]
∈ C2

⟨ψ| =
[
a∗ b∗

]
∈ C2

From this understanding, we can introduce the bracket as the dot product between a
‘bra’ and a ‘ket’. Specifically, ⟨ϕ|ψ⟩.

Definition 8 (Linear operators) A linear operator M is a linear transformation M :
V → W , between two vectors spaces V and W. Suppose |ψ⟩ is a state vector in Cn, then,

M |ψ⟩ =M

(
n∑
i

ci |ui⟩

)
=

n∑
i

ci M |ui⟩ , (1.4)

where ci ∈ C.
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Definition 9 (Hermitian conjugate) The Hermitian conjugate, or adjoint (†), is the
complex conjugate of a transposed matrix

M † = [M∗]T (1.5)

Definition 10 (Hermitian Operator) Hermitian operators, also referred to as self-
adjoint operators, are operators (or matrices) that are equal to their adjoint (or conjugate
transpose).

M † =M (1.6)

Definition 11 (Eigenvalues and eigenvectors) An eigenvector |vi⟩ ∈ Cn of an op-
erator M ∈ Cn×n, is a non-zero vector that satisfies the following equation:

M |vi⟩ = λi |vi⟩ (1.7)

where λi ∈ Cn is the so called eigenvalue. The number of eigenvalues depends to the
dimensions of the operator. An operator of n × n dimensions will have n eigenvectors
and n corresponding eigenvalues. However the number of distinct eigenvalues with their
corresponding eigenvectors can be less than n. These can be found by solving for λ the
following ”characteristic equation”.

det |M − λI | = 0 (1.8)

where I is the Identity matrix.

Definition 12 (Identity matrix) The identity matrix, denoted as I, is a square ma-
trix with ones on its main diagonal and zeros everywhere else. It serves as the ”multi-
plicative identity” in matrix multiplication. When it acts on a vector |ψ⟩ ∈ Cn, it leaves
the vector it unaffected.

I |ψ⟩ = |ψ⟩ (1.9)

In =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 (1.10)

Definition 13 (Spectral decomposition) Any linear, square operator A ∈ Cn×n can
be expressed as:

A = V ΛV † (1.11)

where Λ is a diagonal matrix containing the eigenvalues of A on its diagonal and V is
a matrix whose columns are the eigenvectors of A. The equivalent expression of this is
also:

A =
∑
i

λi |λi⟩ ⟨λi| (1.12)

where the eigenvectors |λi⟩ form an orthonomal set and λi are their corresponding eigen-
values.

Definition 14 (Normal operator) A linear operator M ∈ Cn×n is normal if it com-
mutes with its adjoint:

MM † =M †M (1.13)
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Definition 15 (Commutator) The commutator between two operators A and B is de-
fined as:

[A,B] = AB −BA (1.14)

If [A,B] = 0 we say that the two operators commute. A very important property of two
operators that commute is that:

[A,B] = 0 ⇐⇒ eAB = eAeB (1.15)

Definition 16 (Projective Operator) A projective operator P , often simply called
projector, is an operator that acts on the state space of the system |ψ⟩ by projecting
it onto a paerticular subspace. This operator is not unitary and affects the state |ψ⟩
irreversibly. An operator is projective if

P 2 = P (Idempotence)

P = P † (Hermitian)
(1.16)

Projective operators are also mutually orthogonal and they form a complete set.∑
i

Pi = I (1.17)

Definition 17 (Unitary operator) A linear operator U ∈ Cn×n is a unitary operator
if it satisfies the following condition:

U †U = UU † = I (1.18)

A unitary opereator can also be expressed as:

U = eiH (1.19)

where H is some Hermitian operator.

Definition 18 (Tensor product) The tensor product, also known as the Kronecker
product, is a mathematical operation between two tensors (which include vectors and ma-
trices).

The tensor product between vectors v ∈ Cn and u ∈ Cm is defined as:

v ⊗ u =


v1u
v2u
...
vnu

 ∈ Cn×m (1.20)

The tensor product between matrices Am×n and Bp×q is defined as:

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
. . .

...
am1B am2B . . . amnB

 ∈ Cmp×nq (1.21)

where each aijB denotes scalar multiplication of the matrix B by the matrix element aij.

15



Tensor products are the most important operation in quantum computing and will be used
extensively in the following chapters. For this reason, below are listed all the important
properties of tensor products.

• Bilinearity: For vectors u,v,w and scalars a, b:

(au+ bv)⊗w = a(u⊗w) + b(v ⊗w)

u⊗ (av + bw) = a(u⊗ v) + b(u⊗w)

• Associativity: For matrices A,B, and C:

A⊗ (B ⊗ C) = (A⊗B)⊗ C

• Distributivity with Matrix Multiplication: For matrices A,B,C, and D of
appropriate dimensions:

(A⊗B)(C ⊗D) = AC ⊗BD

A⊗ (B + C) = A⊗B + A⊗ C

(A+B)⊗ C = A⊗ C +B ⊗ C

• Identity: There exists an identity element I such that:

I ⊗ A = A⊗ I = A

for any matrix A.

• Transpose and Conjugate Transpose:

(A⊗B)T = AT ⊗BT

(A⊗B)† = A† ⊗B†

Suppose that we have 2 separate statevectors corresponding to 2 qubits, |ψ⟩ =
[
a
b

]
and

|ϕ⟩ =
[
c
d

]
in C2. The state of the composite system can be written as the tensor product

of those 2 statevectors:

|ψ⟩ ⊗ |ϕ⟩ =
[
a
b

]
⊗
[
c
d

]
=

a ·
[
c
d

]
b ·
[
c
d

]
 =


ac
ad
bc
bd


Notice how the dimension of the vector doubled. This is true for every qubit state we
add. The state vector will grow exponentially. This means that the Hilbert space of n
qubits is described by 2n complex numbers. Note that sometimes, to simplify things, we
use abbreviations when we write down the tensor product of states. All the following
notations are equivalent

|ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ |ϕ⟩ = |ψ, ϕ⟩ = |ψϕ⟩
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1.5 Postulates of quantum mechanics

To better understand qubits, we first need to understand the rules that govern the quan-
tum world. Conversely to classical physics, we don’t possess the intuition to understand
and visualize quantum phenomena. Our brains have evolved in the macroscopic world
which is ruled by Newtonian physics and therefore the behavior of the quantum world, like
being in two states at the same time does not make sense. Nevertheless we can overcome
this lack of senses and turn to using abstract mathematics. Postulates are fundamental
principles or assumptions that cannot be derived from other principles within the theory,
but upon which the theory is based. They serve as the starting point for building a
theoretical framework and making predictions that can be tested experimentally.

Postulate 1.

Every physical system is associated with a wave function. In the case of a particle
the wave function is denoted as Ψ(x, t) and depends on the coordinates x at time t. In
the case of qubits the state is represented by a complex vector |ψ⟩ in the Hilbert space.
This vector contains all the information that is accessible to us about the system.

Postulate 2.

The physical observables are described by linear operators, and specifically, Hermitian
operators. The observables are quantities we can measure. For example, observables in
quantum mechanics are things like the position, momentum, kinetic of potential energy
and angular momentum of a particle. This postulate comes from the observation that
the expectation value of an operator that corresponds to an observable must be real and
therefore the operator must be Hermitioan. This brings us back to spin qubits, where the
quantum state of the spin is represented as a 3 dimensional vector in the Bloch sphere
with basis σ̂x, σ̂y, and σ̂z. These operators are the observable components of the spin and
thus, are described by Hermitian operators. Measuring the spin in one of these directions
will yield either 1 or −1. The measurement is performed by an apparatus that interacts
with the system. For simplicity we can think of the apparatus as a black box, which we
can orient along each axis to measure the respective spin component.

Postulate 3.

Should we measure an observable quantity, the result will always be one of the eigen-
values λi of the corresponding operator that describes the observable. Moreover, the
state for which we measure with certainty λi is the corresponding eigenstate |λi⟩. After
the measurement, the system will be in a state corresponding to the eigenstate of the
value measured, which is often different from its state just before the measurement. This
sudden ”jump is non-deterministic (probabilistic) and is often referred to as the ”collapse
of the wave-function”

As mentioned earlier, when an observable component of the spin is measured, the mea-
suring apparatus will yield nothing else but ±1. This postulate implies that the result of
a measurement is always one of the eigenvalues of the corresponding operator. Therefore,
the eigenvalues of the spin operators are ±1.
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Postulate 4.

Suppose that the state of a quantum system is |ψ⟩. If we measure the observable M,
we will obtain λi with a probability

pr(λi) = |⟨ψ|λi⟩|2 = ⟨ψ|λi⟩⟨λi|ψ⟩ (1.22)

where λi is an eigenvalue and |λi⟩ an eigenvector of the Hermitian operator that de-
scribes M. Since the operator is Hermitian, the possible measurement are unambiguously
distinct. In general, we define the product |λi⟩ ⟨λi| as a Projective Operator Pi. This
postulate binds in a beautiful way everything we mentioned on quantum states and mea-
surement. Everything we can learn about a quantum state is contained within a vector
|ψ⟩. Nevertheless, we are unable to access this information without interacting and per-
manently altering the state of the system. Thus, any kind of computation should occur
before observing the system.

In the case of spin qubits specifically, the information we can observe about the
system is the three components of the spin, σz, σx, σy. These components, as well as any
observable quantity a quantum system may have, are described by Hermitian operators.
Hermitian operators can be decomposed to a set of mutually orthogonal eigenvectors,
where each eigenvector is associated with a different real number, called eigenvalue.

Every time we attempt to observe one of the components of the spin, we get as a mea-
surement result one of the eigenvalues of the respective operator. Since each eigenvalue
has a unique corresponding eigenvector, we can easily deduce the state the system was
prior to observing it.

However, measurement of a specific observable can distinguish without a doubt only
the eigenvector states. So is it possible to observe any state? The answer here is yes! The
eigenvector of each operator constitute an orthonomal basis and hence, we can write each
state as a linear combination of the eigenvectors we intent to measure. It turns out that,
the computational basis {|0⟩ , |1⟩} that we defined earlier on, is simply the basis formed
by the eigenvectors of the σz operator.

Postulate 5.

The time evolution of a closed quantum system is governed by the Schrödinger equa-
tion

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (1.23)

Here ℏ = h
2π

is the reduced Plank’s constant and Ĥ is called the Hamiltonian of the
system. The Hamiltonian is a Hermitian operator that describes the energy of the sys-
tem. Its eigenvalues are the values that correspond to the quantized energy levels of the
system and measuring the energy of it would result one of these values.

The solution of the Schrödinger equation, with a time independent Hamiltonian, describes
how the quantum states of two different times t1,t0 are connected
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|ψ(t1)⟩ = e−iHt/ℏ |ψ(t0)⟩ (1.24)

There is something really interesting and important to mention about the above equa-
tion. The operator that is responsible for the evolution of an isolated quantum system is
unitary. This conclusion is important because it implies that the action of operators on
quantum states is in fact unitary transformations. We will see in the next section how
we utilize this to realize quantum circuits.

1.6 Quantum gates

Classical computers are built from billions of transistors. These transistors are grouped
together in ways that form logic gates. These gates process incoming binary information
and output binary results. Many logic gates are grouped together and connected with
wires in such ways that enable them to perform more complicated tasks, like addition,
multiplication etc. This emergent property is similar in quantum computers. Just like
classical computers, the fundamental building blocks of quantum computers are wires
(connections between qubits) and quantum gates. In reality, quantum gates are applied
by enabling interactions between qubits via external magnetic fields or pulses. Describ-
ing these processes may be difficult, so we can utilize the mathematical representation of
quantum gates.

For an operator to qualify as a quantum gate, it must be a unitary operator. We pre-
viously described a quantum state as a vector within a multi-dimensional Hilbert space.
Quantum gates function by rotating these qubits while preserving their norm (or mag-
nitude). This preservation is crucial, as without it, our understanding of probabilities in
quantum mechanics would break down. Additionally, the progression of a closed quantum
system over time needs to be reversible. This entails that if an operator U transforms
state |s1⟩ into state |s2⟩, its inverse, U †, should be able to revert |s2⟩ back to |s1⟩.

U †U = I

which is possible only when matrix U is unitary. These properties of quantum gates mean
that every unitary matrix can become a quantum gate.

1.6.1 Single qubit gates

In spin qubits, each quantum state can be depicted as a composite of three observable
components: σz, σx, and σy. Now, let’s delve into the associated Hermitian operators.
These distinguished operators are widely recognized as the Pauli operators, named in
honor of the physicist Wolfgang Pauli who identified them. Their matrix representations
and circuit symbols are:

X = σx =

[
0 1
1 0

]
X

Y = σy =

[
0 −i
i 0

]
Y
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Z = σz =

[
1 0
0 −1

]
Z

Interestingly enough, since these operators are Hermitian they can be encoded as the
Hamiltonian of a system. The time evolution of these operators (σx, σy and σz) generates
rotations around the three coordinate axes x, y and z of the Bloch Sphere accordingly
(see figure 1.5). The matrix representation of these operators can be derived by solving
the time dependent Schrodinger Equation.

Rx(θ) = e−i θ
2
X =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ] Rx(θ)

Ry(θ) = e−i θ
2
Y =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ] Ry(θ)

Rz(θ) = e−i θ
2
Z =

[
e−i θ

2 0

0 ei
θ
2

]
Rz(θ)

1.6.2 Hadamard gate

The Hadamard gate is another fundamental quantum gate. It is a gate that performs
a specific linear transformation on a qubit, creating a uniform superposition of its basis
states. The matrix representation and symbol of this gate are:

H =
1√
2

[
1 1
1 −1

]
H

H|0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

|0⟩+ |1⟩√
2

= |+⟩

H|1⟩ = 1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2

[
1
−1

]
=

|0⟩ − |1⟩√
2

= |−⟩

These states are particularly interesting because, when measured in the computational
basis, there’s an equal 50% probability of observing the qubit in the |0⟩ state as there
is in the |1⟩ state. Superposition is the first most important phenomenon that quantum
computers utilize to their advantage. We can picture superposition as being in both
states at the same time, and therefore perform the computation simultaneously, which is
impossible on classical computers. Superposition however is not enough on its own to give
us computational advantage. The second most important phenomenon is entanglement
which will be explained later.
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1.6.3 Multi qubit gates

Multi qubit gates are gates applied to more than 1 qubits. These types of gates can be
created by combining any type of single qubit gates together and are classified into 2
categories: local and non-local operators.

Definition 19 (Local operators). Local operators are unitary operators that can be
factorized with a tensor product. In other words, an operator is local if it acts on only
one part of the composite system.

H Z Y H Z

X H X

The matrix representation of these gates is:

X ⊗ (ZH) for the left circuit

(XH)⊗ (ZHY ) for the right circuit

Note that we usually consider upper qubits to be less significant. By changing the en-
dianess, the positions of the gates in the matrix representation as a tensor product will
be different. Notice how the matrix representation of the operation can be broken into
a tensor product of smaller operators. This means that this operator as a whole in the
2-qubit system is a local operator. The tensor product can be extended to depict more
expansive systems. By correctly placing the operators within the tensor product, we can
design any desired local gate. In quantum circuit diagrams, the lines, often perceived
as wires, don’t literally denote physical wires. Instead, they symbolize the progression
of time from left to right. Local gates, however do not fully utilize the computational
ability that quantum mechanics offer. The non-local operators take advantage of the
strange quantum phenomena that rise through the interaction between particles. One
such phenomenon is entanglement, that allows us to do calculations that otherwise are
deemed impossible.

Definition 20 (Non-local operators). Non-local operators are unitary operators that
can’t be factorized into a tensor product of single qubit gates. This due to the fact that
the action of the gate on one qubit is directly controlled by the state of another qubit.

The most typical class of non-local operators are the control gates. These gates require
two qubits: a control and a target. If the control qubit is in the |1⟩ state, a unitary
operation is carried out on the target qubit. Conversely, if the control qubit is in the |0⟩
state, no operation is executed on the target qubit. Such gates can also be referred to as
Controlled-U gates. The unitary matrix representation of such gates is:

UP0 ⊗ I + P1 ⊗ U

where P0 = |0⟩⟨0| and P1 = |1⟩⟨1| are the projector operators in the comoputational basis.
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The most important type of controlled gate is the Controlled-NOT (CNOT) gate, where
the unitary operation in the target qubit is the X gate.

CNOT = P0 ⊗ I + P1 ⊗X =

[
I 0
0 X

]
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



The CNOT is the most important multi-qubit gate, because as it turns out it has a uni-
versal behaviour. A universal set of quantum gates, is any set of gates that any other
unitary operation can be expressed as a finite sequence of gates from that set. CNOT
and arbitrary single qubit rotation gates form one such universal set of quantum gates.

Non-local operators are not limited to single controlled gates. We can construct any
multi-controlled gate, with multiple controlled qubits and a single target qubit. A prime
example of this is the CCNOT gate, otherwise called the Toffoli gate. The matrix repre-
sentation of this gate is:

CCNOT = P0 ⊗ I ⊗ I + P1 ⊗ CX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


1.7 Entanglement

Entanglement is a fundamental phenomenon in quantum mechanics where two or more
particles become correlated in such a way that the state of one particle immediately
affects the state of the other, no matter the distance separating them. It represents a
departure from classical intuitions and has profound implications for our understanding
of nature and the structure of reality. In fact, this phenomenon in the quantum world is
so absurd, that has many physicists consider quantum theory incomplete to this day.

Albert Einstein, Boris Podolsky, and Nathan Rosen wrote a paper in 1935 pointing out
some strange implications of entanglement. Einstein referred to it as ”spooky action at
a distance” because it seemed that measuring one particle would instantly affect another
far away, implying faster-than-light interactions. However, it’s now understood that while
entanglement involves non-local correlations, it doesn’t involve faster-than-light signal-
ing. Nevertheless, despite not fully understanding the mechanics behind it, we utilize
entanglement as a valuable resource for computation.
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Definition 21 (Product states) A composite system is in a product state, or sepa-
rable state, if it can be expressed as a tensor product of the individual quantum states
that compose it.

∃|ψ1⟩ and |ψ2⟩ : |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩

Definition 22 (Entangled states) A composite system that is not in a product state,
is entangled.

∄|ψ1⟩ and |ψ2⟩ : |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩

The most famous entangled states are the Bell states. Bell states form an orthonomal
basis in H4 called the Bell basis. These states are special because by measuring the state
of one qubit, we definitively know the state of the other.

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2


1
0
0
1

 H

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩) = 1√

2


1
0
0
−1

 H

Z

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩) = 1√

2


0
1
1
0

 H

X

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩) = 1√

2


0
1
−1
0

 H

X Z

Figure 1.7: Φ+ simulated Figure 1.8: Φ+ real device
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1.8 Grover’s Algorithm

Grover’s algorithm is the second most popular quantum algorithm with a proven quantum
advantage. In short, the algorithm can find an element in an unsorted database faster
than classical computers. Intuitively, it is easy to understand how a classical search in
an unstructured database would work. One has to search the elements one by one until
they find the one they are searching for. If the total number of elements in the database
are N , then on average the total number of searches is N

2
. This means that the runtime

of classical computers is bounded by O(N). Grover’s algorithm, on the other hand, can
perform this task in O(

√
N), providing a quadratic speed-up. This means that given a

list of 1 million elements (106), a quantum computer running Grover’s algorithm could
identify the element we are searching for in approximately 1000 steps (103).

How the algorithm works.

Figure 1.9: A list of N elements. The wanted element ω is marked with purple.

Suppose that we have an unstructured list of N = 2n elements (for simplicity). Let’s
also assume that we want to find the index of the element in the purple box. We can
mathematically construct a function f with input x such that the output is 1 if and only
if x = ω (i.e., the desired element in the list) and 0 otherwise.

f : {0, 1, . . . , N − 1} → {0, 1}

f(x) =

{
1 if x = ω

0 otherwise

Suppose also that all elements in the list can be encoded into quantum states like |index⟩⊗
|data⟩. Notice how we only want O(log2N) = O(n) qubits to encode all possible indices
plus some ancilla qubits to encode the data. It is generally right to assume that the data
register would have constant length, as this is also the case in classical Random Access
Memory (RAM).

|index⟩ |data⟩
|0 · · · 001⟩ |data0⟩
|0 · · · 010⟩ |data1⟩
|0 · · · 011⟩ |data2⟩
|0 · · · 100⟩ |data3⟩
|0 · · · 101⟩ |data4⟩

Table 1.1: Table of Indices and Data
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We can access f via a subroutine (often called an oracle) via a unitary operator Uω that
acts on the data register such that:

Uω|x⟩ =

{
−|x⟩ if x = ω

|x⟩ otherwise

This action can be generalized as Uω|x⟩ = (−1)f(x)|x⟩ and we can therefore create the
Unitary matrix of this operator.

Uω =


(−1)f(0) 0 · · · 0

0 (−1)f(1) · · · 0
...

...
. . .

...
0 0 · · · (−1)f(N−1)



Initially the system is prepared as a uniform superposition of all indices corresponding
to their data. We can write this state as:

|ψ⟩ = 1√
N

N−1∑
i=0

|i⟩ ⊗ |datai⟩

For simplicity, we can rewrite the state vector as a uniform superposition and we will
generalize later.

|s⟩ = 1√
N

N−1∑
n=0

|n⟩

We can geometrically depict the state as the normalized sum of two orthogonal vectors.
One vector that contains a uniform superposition of all elements except ω and one vector
that only contains ω. The state |s⟩ can be represented as:

|s⟩ = sin θ |ω⟩+ cos θ |s′⟩ , |s′⟩ = 1√
N − 1

N−1∑
n=0
n ̸=ω

|n⟩

Figure 1.10: Initial superposition of the prepared state.
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The angle θ can be calculated by projecting |s⟩ into |s′⟩ as follows:

⟨s′|s⟩ = 1√
N − 1

· 1√
N

N−1∑
n=0
n̸=ω

⟨n|n⟩ = (N − 1) · 1√
N(N − 1)

=

√
N − 1

N

This means that the length of the projected vector |s⟩ onto |s′⟩ is
√

N−1
N

and therefore

we can calculate angle θ as:

cos θ =
⟨s′|s⟩
∥|s⟩∥

= ⟨s′|s⟩ =
√
N − 1

N

sin2 θ + cos2 θ = 1

sin2 θ = 1− N − 1

N
=

1

N
=⇒ sin θ =

1√
N

θ = arcsin

(
1√
N

)
After the state preparation, the next step is to apply the unitary transformation Uω. By
doing so, we can calculate the result expressed with angle θ. Notice how we can rewrite
Uω as:

Uω = I − 2 |ω⟩ ⟨ω|

Uω |s⟩ = (I − 2 |ω⟩ ⟨ω|)(sin θ |ω⟩+ cos θ |s′⟩)

Uω |s⟩ = sin θ |ω⟩+ cos θ |s′⟩ − 2 sin θ ⟨ω| |ω⟩ |ω⟩ − 2 cos θ ⟨ω| |s′⟩ |ω⟩

Uω |s⟩ = − sin θ |ω⟩+ cos θ |s′⟩

Figure 1.11: State after reflection.
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The final step is to reflect the state Uω |s⟩ ”around the mean”. This can be done with
Grover’s Diffusion operator Us:

Us = 2 |s⟩ ⟨s| − I

UsUω |s⟩ = (2 |s⟩ ⟨s| − I)(− sin θ |ω⟩+ cos θ |s′⟩)

UsUω |s⟩ = −2 sin θ ⟨s| |ω⟩ |s⟩+ 2 cos θ ⟨s| |s′⟩ |s⟩+ sin θ |ω⟩ − cos θ |s′⟩

The inner product ⟨s|ω⟩ is basically the projection of |ω⟩ onto |s⟩. This can be expressed
with regards to angle θ as ⟨s|ω⟩ = sin θ. The same is also true for the projection of |s⟩
onto |s′⟩ which is equal to cos θ. By substituting these values the equation becomes:

UsUω |s⟩ = −2 sin2 θ |s⟩+ 2 cos2 θ |s⟩+ sin θ |ω⟩ − cos θ |s′⟩

Finally, we substitute |s⟩ with its initial expression to get:

UsUω |s⟩ = −2 sin2 θ(sin θ |ω⟩+cos θ |s′⟩)+2 cos2 θ(sin θ |ω⟩+cos θ |s′⟩)+sin θ |ω⟩−cos θ |s′⟩

Isolating |ω⟩ and |s′⟩ coefficients, we get:

UsUω |s⟩ = [−2 sin3 θ + 2 cos2 θ sin θ + sin θ] |ω⟩+ [−2 sin2 θ cos θ + 2 cos3 θ − cos θ] |s′⟩

UsUω |s⟩ = sin(3θ) |ω⟩+ cos(3θ) |s′⟩

Figure 1.12: State after diffusion.

Notice how the angle changed from θ to 3θ; this means that in each iteration the angle
increases by 2θ. To reach the desired result |ω⟩, one must repeat the UsUω transformations
such that sin((2k + 1)θ) = 1, where k is the number of iterations. This process is called
amplitude amplification.
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Earlier we showed that θ = arcsin
(

1√
N

)
. To calculate the number of steps needed to

amplify the amplitude of the desired state, we solve for k as follows:

(2k − 1) arcsin

(
1√
N

)
=
π

2

k =
π

4
· 1

arcsin
(

1√
N

) +
1

2

In order to asymptotically calculate the upper bound of iterations we need to perform,
we must consider the case where N → ∞. In this case

lim
N→∞

sin(θ) = lim
N→∞

sin

(
1√
N

)
= lim

x→0+
sin(x) ≈ x⇒ arcsin(x) ≈ x.

This means that for very large N , the number of steps approximates to:

k =
π

4

√
N +

1

2
≈ O(

√
N)

Figure 1.13: Quantum circuit of Grover’s Algorithm

Figure 1.14: Generic circuit for Grover. Instead of initializing the system in a uniform
superposition, the state preparation circuit initializes the state into a uniform superposi-
tion of the state space we are searching.

28



Chapter 2

From Classical to Quantum Binary
Optimization

One proposed area where quantum computing can bring about both direct applications
and potential advantages over classical computing is in solving binary optimization prob-
lems. These are optimization problems where the variables can only take on binary
values of either 0 or 1. The goal is to find the optimal configuration of these binary
values to either minimize or maximize a cost function. Such problems are prevalent in
many industries, and exact solutions are notoriously challenging to determine using clas-
sical methods, rendering the problem classically intractable. While some believe that
quantum computing might not offer significant improvements in efficiency for these exact
solutions [11], there’s hope that they will provide faster approximate solutions of better
quality (i.e., closer to the optimal solution) than classical algorithms. In line with the
recurring theme of NISQ (Noisy Intermediate-Scale Quantum) devices, the feasibility of
this remains an open question. It’s worth noting that classical algorithms for binary opti-
mization problems benefit from decades of research, resulting in highly efficient heuristics.
This extensive work has been motivated by the industrial demand for robust approximate
solutions to these optimization challenges.

Quantum optimization refers to the use of quantum computers to find the optimal solu-
tion to a problem from among a large set of possible solutions in a time frame that is
drastically reduced compared to classical computers. The inherent properties of quan-
tum computing like superposition and quantum entanglement enable it to process a vast
number of calculations simultaneously, potentially making it a powerful tool for optimiz-
ing complex problems, particularly in fields like logistics, finance, and materials science.
Usually binary optimization problems are converted to QUBO problems which can be run
on quantum computers, using quantum annealing approaches or NISQ based variational
methods, both of which will be explained in detail in this chapter.

2.1 Quadratic Unconstrained Binary Optimization

The Quadratic Unconstrained Binary Optimization (QUBO) is a class of binary
optimization problems with the aim of minimizing or maximizing a quadratic cost func-
tion by finding the optimal combination of 1s and 0s, which we refer to as a bitstring.
This problem can be formally defined as finding the optimal bitstring, x⃗∗, according to
the following:
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x⃗∗ = argmin CQUBO(x⃗) = x⃗TQx⃗

C(x) = xTQx =
N∑
i=1

N∑
j=1

qijxixj

A problem is considered classically intractable if the minimum amount of resources re-
quired to solve it grows exponentially. In the case of the QUBO problem, it is easy to
see that there are 2n possible solutions to look through, and increasing the size of the
problem by 1 doubles the number of possible solutions. The P versus NP problem is
a major unsolved problem in theoretical computer science. As of now it is not proven
nor disproven weather or not P = NP. In informal terms, it asks whether every problem
whose solution can be quickly verified can also be quickly solved.

Definition 23 (P ) The set of decision problems that can be solved quickly by a deter-
ministic Turing machine.

Definition 24 (NP ) The set of decision problems for which a given solution can be
checked quickly by a deterministic Turing machine.

The informal term quickly means the existence of an algorithm solving the task that
runs in polynomial time, such that the time to complete the task varies as a polyno-
mial function on the size of the input to the algorithm (as opposed to, say, exponential
time). NP-complete problems are the hardest problems in NP, and are decision prob-
lems to which all problems in NP can be reduced with polynomial overhead. NP-hard
problems are at least as hard as NP-complete problems and are not necessarily decision
problems. Intuitively, one can imagine the difference of asking whether a solution exists
to the problem, versus being tasked to find said solution. All NP-complete problems can
also be reduced to any NP-hard problems with polynomial overhead. [12] shows that
QUBO is an NP-hard problem, and the existence of a polynomial time algorithm to solve
a QUBO will imply the existence of polynomial time algorithms for NP-complete prob-
lems. As of writing, no such algorithm has been found, and is conjectured to be inexistent.

The main way to ensure that the optimal solution has been found is to use a bruteforce
method to enumerate all possible solutions. However, as the number of possible solutions
grows exponentially with the size of the problem, this quickly becomes computationally
infeasible, especially for large problem sizes typically encountered in industry use cases.
The difficulty of finding optimal solutions has spurred the development of classical meth-
ods to find approximate solutions [13, 14, 15]. Some of these include general-purpose
optimization suites, such as Gurobi [16], CPLEX, and SCIP. Other classical meth-
ods involve the use of relaxation techniques like the Goemans-Williamson algorithm, or
heuristics and metaheuristics, like Tabu search, Path relinking, evolutionary algorithms,
and Simulated Annealing. A more in-depth review of methods to solve QUBO problems
can be found in [17].

The interest in studying QUBO problems comes from the multitude of combinatorial
optimization problems that can be reformulated as a QUBO, such as scheduling, routing,
assignment, and satisfiability problems, to name a few. Finding approximate and opti-
mal solutions to these problems can then be done by searching for the solution for their
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corresponding QUBO problem.

In addition to those listed above, there have been several proposals of alternative methods
to solve QUBO problems using quantum devices, including (but not limited to) methods
based off Grover’s search algorithms and amplitude amplification. Grover’s algorithm
can be used to solve QUBO (Quadratic Unconstrained Binary Optimization) problems
by adapting it to search the solution space of a QUBO problem more efficiently compared
to classical methods. To do this, one would construct an oracle that recognizes solutions
which minimize the QUBO objective function. The oracle is then used within Grover’s
algorithm to iteratively amplify the probability amplitude of the optimal solution in the
quantum state space, thus potentially finding the solution in O(

√
N) time, where N is

the size of the solution space.

Finally another remarkable method to solve QUBO problems is with a Digital Annealer.
A Digital Annealer is a cutting-edge computing architecture that’s designed to solve
large-scale combinatorial optimization problems at an unprecedented pace. Rooted in
the principles of quantum mechanics, it bridges the gap between classical computing and
the much-anticipated quantum computing era. Instead of relying on quantum bits or
qubits like in quantum computers, digital annealers use classical bits, making them more
stable and practical for specific problems today. To grasp how a digital annealer works,
it’s helpful to first understand what annealing itself means. In metallurgy, annealing
refers to a process wherein a material (like metal or glass) is heated and then cooled
slowly to eliminate defects and harden it. This concept has been adopted in the com-
putational domain to signify the idea of finding the minimum energy state (or optimal
solution) in a problem landscape. The Digital Annealer diverges from the simulated an-
nealing algorithm in its approach and scalability. Instead of sequentially exploring the
problem space, a digital annealer has the hardware built to explore multiple potential
solutions simultaneously. This massively parallel process aids in rapid convergence to
the optimal solution. The core of a digital annealer is its specialized hardware that can
evaluate a vast number of potential solutions at once. This is facilitated by a fully con-
nected crossbar circuit where each bit can communicate with every other bit. The digital
annealer starts its process by initializing all bits in a random state. It then begins to
adjust and flip these bits, exploring the energy landscape for lower-energy states. Digital
Annealers are much more efficient on this particular task as their hardware is specific for
this job. They are not general purpose computers based on architectures like ”x86” but
they are optimized for simulating annealing.

Digital annelers and quantum annealers are often compared to one another. Although
quantum annealers are proven to be better, modern day quantum annealers like those
produced by D-Wave require huge ammounts of energy to just operate, they are very
suseptible to noise and they are difficult to scale up. They also lack connectivity, meaning
that qubits each qubit can only interact with a limited number of neighboring qubits.
Digital annealers on the other hand are much cheaper to operate and manufacture, as
they are based on current lithography technology that is optimized throughout the years.
In the next sections we explore how quantum annealing works and the basis behind the
2 most popular hybrid quantum-classical algorithms
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2.2 The Ising Model

The Ising model is a mathematical model used in statistical mechanics and condensed
matter physics to study the behavior of spins in a system of interacting particles. It
was first introduced by the German physicist Ernst Ising in his 1925 doctoral thesis
[18, 19, 20]. The model consists of discrete variables that represent magnetic dipole
moments of atomic ”spins” that can be in one of two states (+1 or -1). The spins are
arranged in a graph, usually a lattice (where the local structure repeats periodically in
all directions), allowing each spin to interact with its neighbors.

Figure 2.1: Interaction between magnetic dipoles.

The J variables encode the type of the interaction. If J < 0, then the interaction is
ferromagnetic, where the spins tend to align with each other. If J > 0, the interaction
is antiferromagnetic, and the spins tend to be opposite. If J = 0, then there is no
interaction between the magnetic dipoles (like between s3 and s4). Each magnet can also
be manipulated via an external magnetic field, which we call bias. The total energy of
the system can be described as the Hamiltonian:

Hising =
N∑
i=1

N∑
j=1

Jijsisj +
N∑
i=1

hisi

Below there is a very simple experiment of interactions between neighboring spins in a
square lattice without external magnetic fields (biases). The 100x100 lattice is initialized
randomly and then it evolves using Monte Carlo Simulation. At each step the algorithm
chooses a random spin in the lattice and calculates its local energy. If the energy is
higher than the scenario where the spin would be opposite, then the spin is flipped,
otherwise there is a probability that the spin will flip into higher energy that depends on
a ”Temperature” hyper-parameter.
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Figure 2.2: Randomly initialized lattice

Figure 2.3: Evolved System after 4×105 Monte Carlo simulation steps. On the left image
the interaction between neighboring spins is ferromagnetic (J=-1) and the spins tend to
align forming large regions. On the right image the interaction is antiferromagnetic (J=1)
and the neighboring spins tend to oppose each other forming a checkerboard like structure

Figure 2.4: Average energy of the whole system per 100 Monte Carlo simulation steps.
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Figure 2.5: Square lattice formation

The Ising model is very important because of its correlation with QUBO problems. A
QUBO problem has a cost function C(x) = xTQx, while the energy of the Ising model is
H(s) = sTJs where x ∈ {0, 1} and s ∈ {−1, 1}. Notice how we can transform a QUBO

Problem to an Ising Hamiltonian by substituting x = (s+1)
2

and vice versa. We can,
therefore, take advantage of the fact that a physical system will seek its ground state and
use this to encode the optimization problem into a physical system.

C(x) = xTQx =
N∑
i=0

N∑
j=0

qijxixj =
1

4

N∑
i=0

N∑
j=0

qij(1− si)(1− sj)

C(x) =
1

4

N∑
i=0

N∑
j=0

qij(sisj + si + sj + 1)

C(s) =
1

4

∑
i,j:i ̸=j

qijsisj +
1

2

N∑
i=0

N∑
j=0

qijsi +
N∑
i=0

qii +
N∑
i=0

N∑
j=0

qij

In order to encode C(s) into a quantum computer, we have to characterize a Hamiltonian,
or a Hermitian operator denoted as H. Each value of C(s) should be encoded as an
eigenstate of this Hamiltonian, and the solution of min{C(s)} should correspond to the
minimum energy eigenstate |s⟩.

H =


C(0 . . . 00) 0 . . . 0 0

0 C(0 . . . 01) . . . 0 0
...

...
. . .

...
...

0 0 . . . C(1 . . . 10) 0
0 0 . . . 0 C(1 . . . 11)


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This is a Diagonal Hamiltonian and we know that this is true because it encodes the
value of the function C(x) if it is applied on the computational basis state.

H|x⟩ = C(x)|x⟩

Consider the Pauli Z operator

Z =

[
1 0
0 −1

]
Note that it has eigenvalues ±1 with eigenvectors being computational basis states.

Z|0⟩ =
[
1 0
0 −1

] [
1
0

]
= (+1)

[
1
0

]
= (+1)|0⟩

Z|1⟩ =
[
1 0
0 −1

] [
0
1

]
= (−1)

[
0
1

]
= (−1)|1⟩

Z|x⟩ = (−1)x|x⟩

We can generalize on multiple qubit systems. For example, Pauli Z acting on the i-th
qubit is given by:

Zi|x0x1 . . . xi . . . xn⟩ = (I ⊗ I ⊗ . . .⊗ Zi ⊗ . . .⊗ I)|x0x1 . . . xi . . . xn⟩

Zi|x0x1 . . . xi . . . xn⟩ = (−1)xi |x0x1 . . . xi . . . xn⟩

Acting on the i-th and j-th qubit:

ZiZj|x0x1 . . . xi . . . xj . . . xn⟩ = (I⊗I⊗ . . .⊗Zi⊗ . . .⊗Zj⊗ . . .⊗I)|x0x1 . . . xi . . . xj . . . xn⟩

ZiZj|x0x1 . . . xi . . . xj . . . xn⟩ = (−1)xi(−1)xj |x0x1 . . . xi . . . xj . . . xn⟩

2.3 Adiabatic Quantum Annealing

Adiabatic quantum annealing [21] is a quantum computing technique used to find the
global minimum of a given function. It leverages the quantum adiabatic theorem, which
states that if a quantum system evolves slowly enough, without interacting with the
environment and exchanging energy, it will remain in its ground state. In the context
of optimization problems, the ground state corresponds to the optimal solution. Thus,
by evolving the Hamiltonian of a quantum system slowly from an initial Hamiltonian
with a known ground state to a final Hamiltonian representing the problem, one can find
the optimal solution to the problem in the ground state of the final Hamiltonian. The
final Hamiltonian is usually the Ising Hamiltonian. The initial Hamiltonian is one which
ground state can be easily prepared and is easy to implement.

Hinitial =
∑
i

σx
i
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The ground state of this Hamiltonian is a uniform superposition of all possible states.
The initial state can be represented as:

|ψinit⟩ =
N⊗
i=1

|+ x⟩ = 1√
N

N∑
n=1

|n⟩

The annealing process is done by slowly decreasing the effect of the initial Hamiltonian
and slowly increasing the effect of the final Hamiltonian. For example:

Htotal(t) = (1− t) ·Hinitial + t ·HIsing

In this particular example, the variable t ranges from 0 to 1. At t = 0, the Hamiltonian
of the system is the initial one, and at t = 1, the total Hamiltonian of the system is the
Ising one (the one that encodes the problem). In reality, different functions are used to
perform this operation, as represented by:

Htotal(t) = A(t) ·Hinitial +B(t) ·HIsing

Where A(t) is an exponentially decaying function and B(t) is an exponentially increasing
function.

Quantum annealing is a very powerfull tool and it has been proven to be better than
simulated annealing [22, 23], because of quantum tunneling. Quantum tunneling [24]
is a quantum mechanical phenomenon where particles move through a potential barrier
that would be insurmountable in classical mechanics. This happens because in quantum
mechanics, particles are described by wave functions, a probabilistic representation of a
particle’s position in space, which allow for a non-zero probability of finding the particle
on the other side of the barrier. The tunneling effect is fundamental to various quantum
mechanical phenomena and is utilized in several technologies, including tunnel diodes [25]
and quantum computing.

Figure 2.6: The quantum tunneling phenomenon. The wave function (light blue) can
evolve into the wave function (dark blue) that has a lower energy by completely ignoring
the thermal barrier in the process.
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The time complexity for an adiabatic algorithm is the time taken to complete the adia-
batic evolution, which is dependent on the gap in the energy eigenvalues (spectral gap)
of the Hamiltonian gmin. Specifically, if the system is to be kept in the ground state,
the energy gap between the ground state and the first excited state of H(t) provides an
upper bound on the rate at which the Hamiltonian can be evolved at time t. When the
spectral gap is small, the Hamiltonian has to be evolved slowly [26].

Figure 2.7: The eigenspectrum of a 2 qubit system (4x4 Hamiltonian).

The runtime of the algorithm is bounded by

T = O

(
1

g2min

)

Note that this is not dependent on the input N of a QUBO or NP-hard problem, but
rather by the minimum spectral gap gmin. This is NOT proof that quantum annealers
can solve NP-hard problems in polynomial time. We note here that adiabatic quantum
computing has been shown to be polynomially equivalent to conventional quantum com-
puting in the circuit model [27].

Adiabatic Quantum Computing (AQC) is a possible method to get around the problem
of energy relaxation. Since the quantum system is in the ground state, interference with
the outside world cannot make it move to a lower state. If the energy of the outside
world (that is, the ”temperature of the bath”) is kept lower than the energy gap between
the ground state and the next higher energy state, the system has a proportionally lower
probability of going to a higher energy state. Thus, the system can stay in a single system
eigenstate as long as needed.
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Although the time complexity of the computation does not depend on the input N of the
QUBO problem, in reality the complexity of reducing the energy from the environment
is a very difficult and expensive task. It gets exponentially more difficult to reduce the
temperature even lower in the current state-of-the-art quantum annealers. Also because
of decoherence, the total annealing time of current devices such as those by D-Wave is
in the range from 20 us to 2 ms, which may not be enough to reach the ground state.
Also notice how by increasing the number of qubits, the total eigenvalues and eigenstates
of the Hamiltonian increase exponentially as O(2n), where n is the number of qubits,
which makes it even more unlikly to reach the ground state eigenstate at the end of the
annealing process. However, one can extract valuable information even if the process
ends in higher energy states as these solutions may still outperform classical algorithms.

Another challenge in the area is that qubits in a quantum annealer may not necessarily
have the same connectivity as the problem, which may limit the specific problems that
can be implemented. Earlier we saw that the Ising model can be pictured as a graph
where interactions between spins (nodes) are depicted with edges between them. When
the Ising Hamiltonian is mapped into a physical system that consists of qubits, the edges
encode the interactions between these qubits. However current topologies are limitied to
nearest-neighbour connections, or maybe several qubits, but not fully connected. These
limitations can be addressed by using additional qubits to bridge the missing connections,
and finding ways to map the connectivity of the problem to match the connectivity of the
device results in the minor embedding problem [28, 29]. Modern day quantum annealers
are manufactured by D-Wave, the leading commercial provider of this technology. Their
current best device has a topology of 16 qubits connected to each qubit [30].

Figure 2.8: Graph Embedding of a 3x3 fully connected Hamiltonian to a square lattice.
The blue variable (initially S1) is now represented by 2 qubits in the square lattice.
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2.4 Quantum Approximate Optimization Algorithm

(QAOA)

The Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm
designed to approximate solutions to combinatorial optimization and machine learning
problems. It is a variational quantum algorithm that utilizes a parameterized quantum
circuit, also called a trial circuit or ansatz, where the parameters are optimized classically
to minimize a cost function representing the problem at hand, usually a QUBO problem.
This hybrid approach, leveraging both quantum and classical computing resources, makes
QAOA a promising tool for near-term quantum computing. This is true because, in the
NISQ era, algorithms that require fault-tolerant qubits are not viable options. However,
controlling parameters via an external classical optimizer can circumvent this issue, as
the optimizer can adjust the circuit to accommodate qubit error rates. Th

The QAOA circuit operates in the following way:

Circuit Construction

1. Initialization: The circuit starts with each qubit in the |0⟩ state, which then
undergoes a Hadamard transformation to create a superposition of all possible
states.

2. Applying Quantum Operations:

• Unitary Operators U(H, γ): Using Trotterization, the quantum Hamilto-
nian, typically representing the problem’s cost function, is broken down into
simpler components. Unitary operators built from these components are ap-
plied to the quantum state, controlled by the parameter γ (gamma).

• Mixing Operators U(B, β): Following the unitary operators, mixing op-
erators controlled by the parameter β (beta) are applied. These operators
encourage exploration of the solution space.

Final State and Parameter Optimization

The final state of the circuit represents a superposition of potential solutions to the prob-
lem, with different probabilities assigned to each. The goal is to measure the state and
find the most probable solution which minimizes the cost function.

The depth of the circuit, indicated by p, scales with the number of layers of unitary and
mixing operators applied. Generally, as p increases, the circuit can represent a richer
variety of states, potentially finding better solutions, but at the cost of increased compu-
tational complexity. For p→ ∞ QAOA can exactly approximate adiabatic evolution and
can therefore (at least in theory) find the exact optimal solution. For small p in the range
from 1 to 10, the picture is more mixed, but there is some indication of the potential
quantum advantage.
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The parameters β and γ are optimized using classical optimization algorithms to minimize
the expected value of the cost function with respect to the quantum state produced by
the circuit. The number of optimizable parameters β and γ increases linearly with the
number of layers p. Since each layer has 2 parameters, the total number of optimizable
parameters is 2p.

|ψ(β, γ)⟩ = e−iβpB · e−iγpC · e−iβp−1B · e−iγp−1C · . . . · e−iβ1B · e−iγ1C ·H⊗n|0⟩ (2.1)

Figure 2.9: The quantum circuit of QAOA. It is controlled by parameters β and γ which
are optimized in a classical computer.

Recall the Ising Hamiltonian Hising =
∑N

i=1

∑N
j=1 JijZiZj +

∑N
i=1 hiZi. We will show that

any 2 matrices in the form of I ⊗ . . . ⊗ Zi ⊗ . . . ⊗ Zj ⊗ . . . ⊗ I commute. First of all,
without loss of generality, let’s assume that i > j and k > m and i ̸= k and j ̸= m.

A = I ⊗ . . .⊗ Zi ⊗ . . .⊗ Zj ⊗ . . .⊗ I

B = I ⊗ . . .⊗ Zk ⊗ . . .⊗ Zm ⊗ . . .⊗ I

AB = BA = I ⊗ . . .⊗ Zi ⊗ . . .⊗ Zk ⊗ . . .⊗ Zj ⊗ . . .⊗ Zm ⊗ . . .⊗ I

AB −BA = 0

The reason why this is true is because

Z · I =

[
1 0
0 −1

]
·
[
1 0
0 1

]
= I · Z = Z =

[
1 0
0 −1

]
Also, the product of 2 Z matrices is:

Z · Z =

[
1 0
0 −1

]
·
[
1 0
0 −1

]
=

[
1 0
0 1

]
.

Therefore, no matter the position of the Z matrices in the tensor product, any Ising matrix
commutes with every other. This is extremely important, because it means that we can
accuratly calculate the unitary transformation via the time evolution of this Hamiltonian
using Schrodinger’s equation.
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U(γ,Hising) = e−iγHising

U(γ,Hising) = e−iγ(
∑N

i=1

∑N
j=1 JijZiZj−iγ

∑N
i=1 hiZi)

Since the Ising Hamiltonian is a sum of matrices that commute, we can break the sum
in the exponent into a product of exponential terms like so:

U(γ,Hising) =
N∏
i=1

N∏
j=1

e−iγJijZi⊗Zj ·
N∏
i=1

e−iγhiZi

Z ⊗ Z =

[
1 0
0 1

]
⊗
[
1 0
0 1

]
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .
Exponentiating a diagonal matrix is a very simple task:

e−iγJijZi⊗Zj =


−iγJij 0 0 0

0 iγJij 0 0
0 0 iγJij 0
0 0 0 −iγJij


This quantum gate is called Rzz. The unitary transformation of this gate is:

Rzz(θ) = e−iθ/2·Z⊗Z =


e−iθ/2 0 0 0
0 eiθ/2 0 0
0 0 eiθ/2 0
0 0 0 e−iθ/2



We can see from this that we need to substitute θ = 2Jijγ to get our desired quantum gate.

Rzz(2Jijγ)

The Rzz gate can be decomposed into 2 CNOT and 1 Rz gate. Let’s assume that the top
wire is the least significant qubit. This means the unitary matrix of the CNOT gate is:

CNOTij = I ⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1| =
[
1 0
0 1

]
⊗
[
1 0
0 0

]
+

[
0 1
1 0

]
⊗
[
0 0
0 1

]

CNOTij =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

+


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


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Next, the Rz(θ) gate applied to the most significant qubit is:

Rz(θ)⊗ I =

[
e−iθ/2 0
0 eiθ/2

]
⊗
[
1 0
0 1

]
=


e−iθ/2 0 0 0
0 e−iθ/2 0 0
0 0 eiθ/2 0
0 0 0 eiθ/2


Finally, the whole circuit is the combined unitary transformation of:

1 0 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 ·


e−iθ/2 0 0 0
0 e−iθ/2 0 0
0 0 eiθ/2 0
0 0 0 eiθ/2

 ·


1 0 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 = Rzz(θ)

The Rzz gate is symmetric, meaning that it doesn’t matter which is the control and which
the target qubit. We can easily prove this by assuming that the control qubit is the most
significant. In this case, the CNOT gate is written as:

CNOTji = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X =

[
1 0
0 0

]
⊗
[
1 0
0 1

]
+

[
0 0
0 1

]
⊗
[
0 1
1 0

]

CNOTji =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Next the Rz(θ) gate applied to the least significant qubit is:

I ⊗Rz(θ) =

[
1 0
0 1

]
⊗
[
e−iθ/2 0
0 eiθ/2

]
=


e−iθ/2 0 0 0
0 eiθ/2 0 0
0 0 e−iθ/2 0
0 0 0 eiθ/2



Finally by performing the previous unitary operation one can prove that indeed the result
is the same:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


e−iθ/2 0 0 0
0 eiθ/2 0 0
0 0 e−iθ/2 0
0 0 0 eiθ/2

 ·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = Rzz(θ)

Rz(θ)

Rz(θ)

Figure 2.10: Equivalent quantum circuit decompositions of the Rzz(θ) gate
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The next step is to analyze the term

N∏
i=1

e−iγhiZi .

Since this is a product of unitary transformations, we can analyze one and apply this rule
to every other.

Z =

[
1 0
0 −1

]
Exponentiating this diagonal matrix gives us:

e−iγhiZi =

[
e−iγhi 0
0 eiγhi

]
The unitary matrix of the Rz(θ) gate is:

Rz(θ) =

[
e−iθ/2 0
0 eiθ/2

]
We can therefore conclude that this unitary transformation is equivalent to applying
Rz(2γhi) on all qubits in parallel. Notice that, similarly, one can prove that the mixing
Hamiltonian corresponds to applying Rx(2β) gates in parallel.

Figure 2.11: QAOA circuit layer of fully connected Ising Hamiltonian for 5 qubits

Figure 2.12: QAOA circuit layer of sparsly connected Ising Hamiltonian for 5 qubits

The number of Rzz gates increases quadratically O(n2) where n is the number of qubits
if the original Q matrix of the QUBO problem is full (does not contain 0 anywhere). This
is a critical factor that limits the performance of this algorithm in the NISQ era, as the
increased circuit depth is more susceptible to decoherence.
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2.5 Hardware Efficient Approach

The QAOA shows promising theoretical benefits as p approaches infinity. However, in
practice, it is very difficult to execute even a small number of layers due to issues such as
decoherence and low gate fidelity, which render the final results predominantly noisy and
largely unusable [31]. This led to the development of a new kind of ansatz termed the
“Hardware Efficient Ansatz”. This alternative approach exclusively employs native gates
specific to a particular quantum computer, utilizing RY rotations followed by nearest-
neighbor entangling CNOT gates. Consequently, the quantity of two-qubit gates scales
linearly with the number of layers, a stark contrast to the quadratic increase seen with
QAOA.

Despite lacking theoretical advantages, this circuit configuration is motivated by the aspi-
ration to alter the existing cost function, thereby exploring a different problem landscape
in hopes of achieving improved results. It finds substantial application in the Noisy
Intermediate-Scale Quantum (NISQ) era.

Figure 2.13: Hardware Efficient Ansatz

It is clear that the number of optimization variables escalates as O(N ·p), where p denotes
the number of layers and N the number of qubits. This trend implies a substantial
increase in optimization variables with each additional layer, unlike O(2 · p) in QAOA,
potentially facilitating the attainment of more refined solutions for a limited number of
layers. Despite the potential to incorporate more layers due to the circuit’s inherent
efficiency, in practice, these circuits encounter a distinct challenge when many layers are
added: the emergence of barren plateaus. This phenomenon signifies that the optimizer
reaches a plateau, making further optimization arduous. This was proved in a recent
paper [32].
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Chapter 3

Solving the Subset Sum and
Travelling Salesman Problem on
Cloud Quantum Computers

The evolution of quantum computers has spawned an entirely new industry that leverages
them to address real-world challenges. Significant research has been conducted to dis-
cern the potential advantages of the current state-of-the-art technology. While previous
experiments have claimed quantum supremacy, the problems they tackled lacked prac-
tical real-world applications. Efforts have been made to harness the power of quantum
computers with fewer qubits through qubit compression techniques, aiming for tangible
real-world utility.

This chapter delves into two prominent computer science problems: the Subset Sum
and the Travelling Salesman Problem. Both of these problems, or some variation
of them, has real world applications. The Subset Sum is a derivative of the Knapsack
0-1 problem and is interconnected with resource allocation, while the TSP is closely con-
nected with route minimization. In subsequent sections, we define these problems, recast
them as QUBO, and implement them on quantum computers using QAOA and VQA,
as well as Quantum Annealing. Additionally, we conduct rigorous tests, validating the
theories presented in Chapter 2 and offering comparative analyses.

Problem Name

Time
Complexity for

Finding
Solution

Time
Complexity for

Verifying
Solution

Class of the
Problem

Sorting O(n log2 n) O(n) P
Subset Sum O(n · 2n) O(n) NP-complete
Knapsack 0-1 O(n · 2n) O(n) NP-complete

TSP O(n!) O(n) NP-complete

Table 3.1: Complexity and Classification of Problems
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3.1 Subset Sum

3.1.1 Problem Description

Let A be a multiset of integers and S a constant number. Our objective is to find a
subset of the initial multiset such that the sum of all the elements of the subset is as close
as possible to the constant S . Note that this is a variation of the original problem, where
we need to decide weather or not such subset exist and sums up to exactly the number
S . Here we already know that an exact answer exists and we compare different methods
to see how close to the actual solution they get.

Let’s use a binary vector x of length n to denote whether or not we pick a specific number
from the set.

xT = [x1, x2, . . . , xn] where xi ∈ {0, 1} for each i ∈ [1, n] ⊂ Z

Using this encoding, we can compute the sum for every given vector x as follows:

C(x) =
N∑
i=1

aixi

To solve the problem, one must calculate x such that the following equation is satisfied:

C(x) =
N∑
i=1

aixi = S

Notice how this is a Constrained Linear Binary Optimization problem. The next step
is to transform it into a QUBO (Quadratic Unconstrained Binary Optimization)
problem. We can do this by creating a quadratic energy well with the following transfor-
mation:

C(x) =

(
N∑
i=1

aixi − S

)2

≥ 0

This is now an Unconstrained Problem and the reason is that every quadratic expression
must be greater than or equal to 0. This means that we can treat this new expression as
Unconstrained and move on. By transforming this QUBO problem to the Ising Hamilto-
nian we obtain the coefficients of the Ising model:

Jij =
1

2
aiaj, with N > i > j ≥ 0

hi = −ai(S − K

2
), with N > i ≥ 0

K =
N∑
i=1

ai
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3.1.2 Subset Sum on Quantum Computers

Here we will perform tests for different input data, starting from a very simple problem
and then moving to harder problems. First we will test QAOA and then we compare
VQA with Quantum Annealing. Let’s consider a very simple example where the list
A = [1, 1, 1] and S = 1.

x Sum C(x)
000 0 1
001 1 0
010 1 0
011 2 1
100 1 0
101 2 1
110 2 1
111 3 4

Table 3.2: Brute force solution of the problem. The desired solutions are those that
minimize C(x)

We can calculate the Q matrix by obtaining all the coefficients of the polynomial expres-
sion C(x) as such:

C(x) =

(
3∑

i=1

aixi − S

)2

= (x1 + x2 + x3 − S)2

C(x) = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 − 2Sx1 − 2Sx2 − 2Sx3 + S2

Notice how since xi are binary variables, this means that x2i = xi. By collecting all the
coefficients in a matrix, we construct the Q matrix of the QUBO problem:

Q =

1− 2S 2 2
2 1− 2S 2
2 2 1− 2S

 substitute S=1
=

−1 2 2
2 −1 2
2 2 −1



The J matrix of the Ising Hamiltonian is: J =

0 0.5 0.5
0 0 0.5
0 0 0

.

Figure 3.1: QAOA circuit for p = 1. Notice the interactions between the qubits corre-
spond to the positions of the J matrix, where the value Jij with i > j is not 0.
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QAOA

The next experiments implement the use case described above. We perform QAOA for
1, 10 and 20 layers. The quantum circuit of each layer is the circuit shown in figure 3.1
and the execution was performed in a simulator. We perform the optimization process
20 times, with 10,000 shots per circuit execution. In figure 3.2, we see on the left column
the average evolution of the cost function and on the right column the average measured
state after the optimization process. The optimal solution is marked with green.

Figure 3.2: Comparison between instances of QAOA with 1, 10 and 20 number of layers
(signified by p). Notice how the variance of the cost function when p = 20 is close to
0, meaning that with 20 layers we almost always get the optimal measurement after the
optimization.
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Quantum Annealing

Here we perform a simulation of quantum annealing given the previous use case. The
goal of this is to get an insight into how quantum annealing works and to compare it
with QAOA. The Hamiltonian of the system is:

H(t) = (1− t)Hinit + tHising

where t ∈ [0, 1] is the time, and

Hinit =
3∑

i=1

σx
i , Hising =

2∑
i=1

3∑
j=2

Jijσ
z
i σ

z
j +

3∑
i=1

hiσ
z
i .

Hinit = X ⊗ I ⊗ I + I ⊗X ⊗ I + I ⊗ I ⊗X

Hinit =

[
0 1
1 0

]
⊗
[
1 0
0 1

]
⊗
[
1 0
0 1

]
+

[
1 0
0 1

]
⊗
[
0 1
1 0

]
⊗
[
1 0
0 1

]
+

[
1 0
0 1

]
⊗
[
1 0
0 1

]
⊗
[
0 1
1 0

]

Hinit =



0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0


Hising = J12I⊗Z⊗Z+J13Z⊗I⊗Z+J23Z⊗Z⊗I+h1I⊗I⊗Z+h2I⊗Z⊗I+h3Z⊗I⊗I.

Hising =



0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3


The final Hamiltonian expressed as a function of t is:

H(t) =



0 t− 1 t− 1 0 t− 1 0 0 0
t− 1 −t 0 t− 1 0 t− 1 0 0
t− 1 0 −t t− 1 0 0 t− 1 0
0 t− 1 t− 1 0 0 0 0 t− 1

t− 1 0 0 0 −t t− 1 t− 1 0
0 t− 1 0 0 t− 1 0 0 t− 1
0 0 t− 1 0 t− 1 0 0 t− 1
0 0 0 t− 1 0 t− 1 t− 1 3t


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At t = 0 the total Hamiltonian of the system is only the initial one. The ground state
of the initial Hamiltonian, i.e. the eigenstate with the minimum eigenvalue (energy) is a
uniform superposition of all qubits. In this case since we have 3 qubits, the initial state
will be:

|ψ(t = 0)⟩ = 1√
8

7∑
n=0

|n⟩ =
2⊗

n=0

|+⟩

At t = 1, assuming that the annealing process was perfect, the system will be in a
uniform superposition of the ground states of the Ising Hamiltonian. In this particular
example, we see that the Ising Hamiltonian has 3 minimum eigenvalues corresponding to
eigenvectors |001⟩, |010⟩ and |100⟩. The ground state will therefore be:

|ψ(t = 1)⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)

In figures 3.3, 3.4 and 3.5 we see the evolution of the system transitioning from t = 0
to t = 1. The right columns of the figures show the eigenspectrum. The green line is
the ground state and the left columns of the figures correspond to the eigenstate of the
ground state at the given times. These snapshots of the evolution are for t = 0 (start of
the annealing), t = 0.25, t = 0.5, t = 0.75 and t = 1 (end of the annealing).

Figure 3.3: Simulation of quantum annealing at t = 0 and t = 0.25.
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Figure 3.4: Simulation of quantum annealing at t = 0.5 and t = 0.75.

Figure 3.5: End of the annealing (t = 1).
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Comparison between VQA and QA

For this next experiment, the size of the multiset A is 15. That means that the number of
binary variables and (as a result) the number of qubits used is 15. There are a total of 50
experiments with different randomly created multisets A and different randomly picked
constants S. The goal of this experiment is to compare VQA with quantum annealing
in the quality of the results. The criterion for the quality of the solution is the distance
from the optimal i.e.

∑N
i=0 |aix∗i − S|. The number of layers used for VQA is 2 with

10000 shots per circuit execution. The number of experiments performed using quantum
annealing was also 50, with 100 runs per experiment, totalling 5000 measurement results.
The results are shown in figure 3.7. Figure 3.6a shows us the average evolution of the
cost function while figure 3.6b shows us what happens when we use too many layers.

(a) VQA (2 layers) (b) VQA (20 layers)

Figure 3.6: Optimization process for 15 qubits depicted as the average among 50 experi-
ments. In the right image the optimizer fails to optimize due to barren plateaus.

Figure 3.7: Performance comparison of quantum annealing vs hardware efficient VQA
(lower is better). D-Wave performs better on average.
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3.2 Travelling Salesman Problem (TSP)

3.2.1 Problem Description

The Travelling Salesman Problem (TSP) is a very interesting and well-known problem
in computer science. In addition to being a notorious NP-complete problem that has
drawn the attention of computer scientists and mathematicians for over two centuries,
the TSP has also important bearings on finance and marketing, as its name suggests.
Colloquially speaking, the traveling salesman is a person that goes from city to city to
sell merchandise. The objective in this case is to find the shortest path that would enable
the salesman to visit all the cities and return to its hometown, i.e. the city where he
started traveling. By doing this, the salesman gets to maximize potential sales in the
least amount of time.

The mathematical formulation with some early analysis was proposed by W.R. Hamilton
in the early 19th century. Mathematically the problem is, as in the case of Max-Cut, best
abstracted in terms of graphs. The TSP on the nodes of a graph asks for the shortest
Hamiltonian cycle that can be taken through each of the nodes. A Hamilton cycle is
a closed path that uses every vertex of a graph once. The general solution is unknown
and an algorithm that finds it efficiently (e.g., in polynomial time) is not expected to exist.

Let G = (V,E) be a fully connected undirected weighted graph, with N vertices and
N2 edges. Let cij be the distance between vertices vi and vj. The Hamiltonian cycle is
defined by N2 variables xij, each one representing a connection between nodes vi and vj.

xij =

{
1 if there is a connection between vi and vj,

0 otherwise.

Notice how it does not make any sense for xii variables to be 1, since the path from a
node to itself does not exist. Therefore, we can discard N variables and we are left with
N2 −N binary variables. The objective is to minimize the tour length:

C(x) =
N∑
i=1

N∑
j=1
j ̸=i

cijxij

Without any further constraints however, assuming that cij > 0, which is reasonable
since distance is always positive, the cost function is minimized when xij = 0 for every
combination of i and j. This does not correspond to a path, meaning that we need to add
constraints to force each vertex to have exactly one incoming and outgoing edge. This
can be done with 2N linear constraints:

N∑
i=1
i ̸=j

xij = 1,
N∑
j=1
j ̸=i

xij = 1

53



We can map the xij variables into a square matrix in order to obtain a more intuitive
way to understand the constraints. Consider a graph with 4 nodes:

− 1 0 0
0 − 0 1
1 0 − 0
0 0 1 −

This means that the path goes from v1 → v2 → v4 → v3. The constraints basically tell
us that the sum of the binary variables in each row and each column in this matrix must
be equal to 1. The next step is to transform this problem which is linear constrained to
quadratic unconstrained. We can modify the cost function to transform the problem into
QUBO:

C(x) =
N∑
i=1

N∑
j=1
j ̸=i

cijxij + A
N∑
i=1

 N∑
j=1
j ̸=i

xij − 1


2

+ A

N∑
j=1

 N∑
i=1
i ̸=j

xij − 1


2

The constraints are controlled by a constant multiplier A. In order to make sure that the
constraints are respected, A > max(cij). We can examine only one constraint since they
are all similar.  N∑

j=1
j ̸=i

xij − 1


2

=
N∑
j=1
j ̸=i

N∑
k=1
k ̸=i

xijxik − 2
N∑
j=1
j ̸=i

xij + 1

The QUBO matrix can be constructed by linearizing the xij variables, which now form a
matrix. Since we have a total of N2 −N binary variables, the QUBO matrix will have a
total of N4 − 2N3 +N2 variables. Consider this very simple example where N = 3. The
QUBO Matrix of the constraints will have dimensions 6x6 and the its generic formula is:

−2A A 0 0 0 A
A −2A 0 A 0 0
0 0 −2A A A 0
0 A A −2A 0 0
0 0 A 0 −2A A
A 0 0 0 A −2A


However, these constraints are not enough to get a valid answer. Note that the following
matrix corresponds to a solution that satisfies the constraints above (each vertex having
1 incoming and 1 outgoing edge): 

− 1 0 0
1 − 0 0
0 0 − 1
0 0 1 −


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In this particular example v1 → v2 and back to v1. Similarly v4 → v3 and back to v4. This
represents 2 disconnected graphs and is not a Hamiltonian Cycle. For this reason, we
need to force each outgoing edge to be different from the incoming one. Mathematically
speaking: xij ̸= xji if and only if xij = 1 or xji = 1. We can express this as a sum since
these are binary numbers.

xij + xji ̸= 2

We can transform this inequality constraint into 2 linear equality constraints:

xij + xji = 0 and xij + xji = 1

Notice how when xij ̸= xji or xij = xji = 0 only one constraint is violated, while when
xij = xji and they are both equal to 1, both constraints are violated. The next step is to
transform them into QUBO constraints.

N−1∑
i=1

N∑
j=i+1

(xij + xji)
2 and

N−1∑
i=1

N∑
j=i+1

(xij + xji − 1)2

N−1∑
i=1

N∑
j=i+1

(xij + xji + 2xijxji) and
N−1∑
i=1

N∑
j=i+1

(−xij − xji + 2xijxji)

Next we can express the constraint controlled via a constant multiplier B as:

C ′(x) = B

(
N−1∑
i=1

N∑
j=i+1

(xij + xji + 2xijxji) +
N−1∑
i=1

N∑
j=i+1

(−xij − xji + 2xijxji)

)

C ′(x) = B
N−1∑
i=1

N∑
j=i+1

4xijxji

The generic QUBO matrix of this constraint for N = 3 is:
0 0 4B 0 0 0
0 0 0 0 4B 0
0 0 0 0 0 0
0 0 0 0 0 4B
0 0 0 0 0 0
0 0 0 0 0 0



The final complete expression of the cost function is:

C(x) =
N∑
i=1

N∑
j=1
j ̸=i

cijxij+A
N∑
i=1

 N∑
j=1
j ̸=i

xij − 1


2

+A
N∑
j=1

 N∑
i=1
i ̸=j

xij − 1


2

+B
N−1∑
i=1

N∑
j=i+1

4xijxji

55



3.2.2 TSP on Quantum Computers

In order to test this theory, we first consider a very simple graph with N = 3 vertices
ignoring the distances for now, meaning that the number of qubits used is 6. We first
shift out focus to the constraints to test if the model is build correctly. We set A = 1
(even though it does not matter for this experiment) and B = 0. The experiment is
done in D-Wave’s quantum annealer. The QUBO matrix and the J matrix of the Ising
Hamiltonian are:

−2 1 0 0 0 1
1 −2 0 1 0 0
0 0 −2 1 1 0
0 1 1 −2 0 0
0 0 1 0 −2 1
1 0 0 0 1 −2




0 0.5 0 0 0 0.5
0 0 0 0.5 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 0
0 0 0 0 0 0.5
0 0 0 0 0 0


QUBO matrix J matrix

In Figure 3.8, we see the mapped graph of the Ising Hamiltonian as well as the result
after the annealing. The blue vertices correspond to ‘1’ and the black vertices correspond
to ‘0’. The blue edges between the vertices represent interactions between these qubits.
The matrix adjacent to the figure depicts the extracted solution post-annealing.

Figure 3.8: D-Wave Result Graph

− 1 0
0 − 1
1 0 −



We can use the reconstructed matrix of xij variables to calculate the path. In this specific
example, the path is from v1 → v2 → v3 → v1, which is a valid solution to the problem,
meaning it does not violate the constraints. In order to verify that the constraints are
built correctly, we can perform an even bigger experiment with N = 6. This means that
we have 30 binary variables and the QUBO matrix contains a total of 900 variables. The
penalty terms are A = 1 and B = 1. Figure 3.9 shows the complexity of the system
for this use case. The extracted result pos-annealing is shown in the matrix next to the
figure. The result shows that no constraints are violated.

Figure 3.9: D-Wave Result Graph


− 0 1 0 0 0
0 − 0 1 0 0
0 0 − 0 0 1
0 0 0 − 1 0
1 0 0 0 − 0
0 1 0 0 0 −


v1 → v3 → v6 → v2 → v4 → v5 → v1
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Figure 3.10: A trivial example of the TSP

The next step is implement TSP using QAOA. Consider the graph in Figure 3.10. First
of all we set A = 2 ·max(cij) = 182 to make sure that the constraints are met and B = 0.
The reason why we set B = 0 is that for this particular example the first constraints are
enough to get a valid solution, since there is no possible configuration that could lead to
disconnected graphs. The QUBO matrix of this problem is:

−316 182 0 0 0 182
182 −273 0 182 0 0
0 0 −316 182 182 0
0 182 182 −301 0 0
0 0 182 0 −273 182
182 0 0 0 182 −301


The J matrix and h vector of the Ising Hamiltonian can be calculated from the initial
QUBO matrix:

J =


0 91 0 0 0 91
0 0 0 91 0 0
0 0 0 91 91 0
0 0 0 0 0 0
0 0 0 0 0 91
0 0 0 0 0 0

 h =


24
45.5
24
31.5
45.5
31.5



Figure 3.11: QAOA circuit for single layer implementing the Hamiltonian described
above. Notice how the interactions between qubits (ZZ gates) are coherent with the
positions of the J matrix where the value is not zero.
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The next experiment implements the use case described above. There are N = 3 nodes
and we have a total of 6 binary variables xij. This means that the total number of
qubits is 6 (as seen in Figure 3.11). There are a total of 3 experiments. Each experiment
performs the optimization of the variational ansatz 50 times to get an average estimation
of the expected result. The experiments are executed for 1, 10 and 40 layers accordingly.
The optimized circuit at the end of the optimization routine is executed one last time
with the optimized parameters to get the final results. After this, the average probability
distribution is generated among the 50 total experiments for every different number of
layers. The optimal solution as well as the result of the experiments are summarized
below (Figure 3.12).  − 1 0

0 − 1
1 0 −

  − 0 1
1 − 0
0 1 −


v1 → v2 → v3 → v1 v1 → v3 → v2 → v1
xopt = 100110 (38) xopt = 011001 (25)

Figure 3.12: Result of experiments. Optimal answer is marked with green.
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Large Scale using Quantum Annealing

This experiment is done using real-world data. The vertices are the cities listed in
the table below. There are N = 7 cities, meaning that we have a total of 42 binary
variables. The optimization is executed using D-Wave’s Quantum Annealer. The result
below corresponds to the best measurement out of a single experiment with 2ms an-
nealing time and 300 measurements. The table below contains the distance between each
pair of cities in km, and the matrix of binary variables corresponds to the optimized path.

Athens Sofia Rome Kiev Berlin Paris Moscow
Athens - 525.29 1050.86 1486.68 1802.88 2095.85 2231.02
Sofia 525.29 - 894.07 1021.70 1318.55 1757.24 1777.41
Rome 1050.86 894.07 - 1675.21 1182.55 1105.28 2375.33
Kiev 1486.68 1021.70 1675.21 - 1204.45 2023.48 755.74
Berlin 1802.88 1318.55 1182.55 1204.45 - 877.46 1608.83
Paris 2095.85 1757.24 1105.28 2023.48 877.46 - 2486.25

Moscow 2231.02 1777.41 2375.33 755.74 1608.83 2486.25 -

− 1 0 0 0 0 0
0 − 0 0 0 0 1
1 0 − 0 0 0 0
0 0 0 − 1 0 0
0 0 0 0 − 1 0
0 0 1 0 0 − 0
0 0 0 1 0 0 −


v1 → v2 → v7 → v4 → v5 → v6 → v3 → v1

Figure 3.13: Optimized Hamiltonian Cycle
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Chapter 4

Quantum Computing for Financial
Portfolio Optimization

The swift advancement of quantum computing technology has ignited intense research
into its potential applications for solving tangible real-world issues. Notably, the finan-
cial sector has emerged as a focal point of this exploration due to its vast diversity and
significant audience engagement. Finance is defined as the management of money and
includes activities such as investing, borrowing, lending, budgeting, saving, and forecast-
ing. In this context it must be noted that this field of science deals with many sensitive
data, like personal data, investments, and contracts among others. It also means that it
can become extremely difficult to deal with some of the aforementioned activities, since a
restriction in the data can possibly lead to a halt in computations. Within the realm of fi-
nancial services, a multitude of computationally intense challenges emerge, spanning from
asset management to investment banking and extending to retail and corporate bank-
ing. Quantum computing carries the potential to profoundly transform our approaches
to these computationally demanding issues. It enhances Monte Carlo simulations [33]
used in risk management [34], allowing for more precise and efficient predictions. Deriva-
tives pricing, currently reliant on models like Black-Scholes, can also be vastly improved
with quantum algorithms that provide faster and more comprehensive evaluations. Fi-
nally Quantum Machine Learning (QML) [35] represents another promising application.
Moreover, machine learning streamlines process automation, aids in fraud detection by
monitoring user actions and network security, evaluates customer loan risks, and supports
algorithmic trading by analyzing real-time news and trade results.

Here we consider portfolio optimization which is the main part of this thesis. As-
set managers and financial analysts must sift through a myriad of investment options,
balancing risks and returns, to develop a robust portfolio for their clients. Classical
computational models can take inordinate amounts of time to weigh and correlate the
thousands, if not millions, of potential asset combinations. Quantum computers have the
potential to rapidly assess combinations, allowing investors to make quicker, yet more
informed decisions. In the next sections we first define the problem of portfolio optimiza-
tion. Next we introduce the basic terminology of finance, like risk and gain. After this
we express the objective of the problem as a cost function which is then transformed
into a QUBO problem. Then we run extensive tests of the model in D-Wave’s quantum
annealer for small input to prove its validity and then we execute a real world model with
data. Finally we propose a new method of solving this specific problem.
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4.1 Problem Formulation

Portfolio optimization is a process that allows investors to select the best possible port-
folio, given their risk tolerance, investment objectives, constraints, and the anticipated
returns of various assets. The goal is to determine the optimal allocation of assets in a
portfolio in order to maximize expected return for a given level of risk, or equivalently,
to minimize risk for a given level of expected return.

Figure 4.1: Comparison between different portfolios

Let’s begin by defining our variables. Let G be a constant representing the total budget
we have. Suppose we have a list of N assets. Let ω be a vector of real variables bounded
between 0 and 1. Mathematically we write it like this:

ω ∈ Rn : ωi ∈ [0, 1] ⊂ R ∀ i = 0, 1, 2, . . . , N − 1

Each ωi variable represents the proportion of the budget assigned to asset i. Consider
the following example, where we have 4 assets: TSLA, MSFT, AAPL, AMZN.

62%
22%

12% 4%

TSLA
MSFT
AAPL
AMZN

ω =


ω0

ω1

ω2

ω3

 =


0.62
0.22
0.12
0.04

→


62% → Tesla

22% → Microsoft
12% → Apple
4% → Amazon



Finally given G we can calculate the budget allocated for each asset by simply multiplying
G with ω. One can then calculate the numbers of shares they can buy. Since most modern
investment platforms allow the users to buy fractional shares, the number of shares is
calculated as a simple division of the budget allocated for this specific asset and the asset
price.

number of shares = G · ω ÷ asset price
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Definition of risk and return

We define the daily return dr
(t)
i and the daily growth factor dgf

(t)
i of an investment

in asset i at timestamp t as:

dr
(t)
i =

p
(t)
i − p

(t−1)
i

p
(t−1)
i

dgf
(t)
i = dr

(t)
i + 1

The cumulative return cri is calculated simply by multiplying all daily growth factors
for the whole timeline that consists of D days. The annualized return ri depends on
the number of days n in the year the asset was held. For simplicity we assume that we
perform long term investments, and therefore set n = D.

cri =
D∏
t=1

dgf
(t)
i ri = cr

D
n
i − 1

The risk taken by the investor in the portfolio is measured by the volatility σ =
√
ωTΣω,

which is computed from the covariance matrix Σ. The covariance matrix is a matrix that
captures the variance and covariance among multiple variables (here assets). It provides
a measure of how changes in one variable might be associated with changes in another.
Let’s define ai as a vector of daily returns of each asset i :

ai = [dr1i , dr
2
i , dr

3
i , . . . , dr

D
i ] E[ai] =

1

D

D∑
t=1

drti

The variance and covariance of asset i is defined as:

var(ai) =
1

D

D∑
t=1

(drti − E[ai])
2 cov(ai,aj) =

1

D

D∑
t=1

(
(drti − E[ai]) · (drtj − E[aj ])

)

Σ =


var(a0) cov(a0,a1) . . . cov(a0,aN )

cov(a1,a0) var(a1) . . . cov(a1,aN )
...

...
. . .

...
cov(aN ,a0) cov(aN ,a1) . . . var(aN )



(a) Positive covariance (b) Negative covariance

Figure 4.2: Description of covariance.
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4.2 QUBO Formulation of the Problem

The optimal portfolio [36] is one that maximizes reward and minimizes risk. Each max-
imization problem can turn into a minimization problem by just flipping the sign. The
optimal portfolio therefore minimizes the cost function:

C(ω) = −rTω +
γ

2
ωTΣω

In this equation, the vector r is the vector of annualized returns and the parameter γ is
the so-called risk aversion, which controls the portfolio’s penalty for risk. As it is obvious,
increasing risk aversion translates to a decreased amount of risk the investor is willing
to take. Both the covariance matrix and the vector of returns are precalculated by the
collected stock data. In practice, we also want to fix the entire budget being invested
to a constant (defined as G previously). This means that the omega vector must be
normalized. We can achieve this by adding a penalty constraint to the cost function
controlled via a Lagrangian multiplier:

C(ω) = −rTω +
γ

2
ωTΣω + ρ

(
N∑
i=0

ωi − 1

)2

In real life settings, financial institutions construct a variety of portfolios for different
risk profiles. The problem then is to obtain the best possible portfolio, i.e., the one that
maximizes returns, for a given value of the risk as measured by the portfolio’s volatility.
There are two ways we can achieve this. One is to perform the calculation for different
values of the risk aversion γ

2
to obtain different values of volatility and then choose the

one that suits us. This method is arguably very inefficient. The other way is to force the
cost function by introducing another constraint controlled via a Lagrangian Multiplier.

C(ω) = −rTω + ρ

(
N∑
i=0

ωi − 1

)2

+ τ(ωTΣω − σ2
target)

2

Finally we need to also integrate investment bands into the model. In simple words, this
means that there is a minimum and a maximum investment for each asset. The reason
we need this is because it enforces diversification in the portfolio, so as to avoid possible
corner solutions, like for example portfolios where most of the budget is allocated in only
a few assets. These solutions, even if mathematically correct, are not wanted because
there are other factors (environmental e.t.c.) that cannot be modeled and may affect
the course of a company. Also some companies allow investments only in large bundles,
meaning that they set a minimum investment. Mathematically speaking this means that
omega is bounded by a minimum and a maximum value.

ωi ∈ [ωmin
i , ωmax

i ] ⊂ R

We can, however perform a linear transformation so that counting starts from 0 instead
of an arbitrary number. This will come handy later as it is much easier to count in binary
numbers starting from 0. Note that it is also very easy to retrieve the original ωi variables
by performing the linear transformation in reverse.

ω̃i = ωi − ωmin
i =⇒ ω̃i ∈ [0, ωmax

i − ωmin
i ]
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Discretizing ωi

The variables ω̃i are discretized by using binary variables. This implies that investments
come in discrete packets. Also, by using a fixed number of bits for each ω̃i variable, a
natural upper cutoff is implemented making the process of counting much easier. The
encoding we use for this particular case is:

ω̃i =
1

K

(
Bi−1∑
q=0

2qxi,q +M · xi,Bi

)

• xi,q ∈ {0, 1} is the readout value of the qth qubit assigned to asset i.

• K is a constant and represents the resolution of the discretization.

• M = K · (ωmax
i − ωmin

i )− (2Bi−1 − 1) ≥ 0 is a constant representing overflow offset.

• Bi = 1 +
⌊
log2

(
1 +K · (ωmax

i − ωmin
i )

)⌋
is the number of bits used per ωi

The above expression of ω̃i can be simplified when K is one less than a power of 2
(K = 2k − 1). The simplified expression is:

ω̃i =
1

K

2k∑
q=0

2qxi,q

Treating the bitvector as an unsigned integer, it is now clear how this formulation
works. Below is a table that demonstrates counting in discrete steps and shows the
resulting ω̃i variable for K = 4.

Bitstring ω̃i

0000 0.00
0001 0.07
0010 0.13
0011 0.20
0100 0.27
0101 0.33
0110 0.40
0111 0.47
1000 0.53
1001 0.60
1010 0.67
1011 0.73
1100 0.80
1101 0.87
1110 0.93
1111 1.00

If the resolution K is not a power of 2, then things get a bit more complicated. This
is where the constant M is used. By replacing the coefficient of the most significant bit

64



with M , the counting process can be manipulated to always reach the desired ω̃max
i when

all bits are 1. Overall, this is a great encoding that uses linear binary terms for each ω̃i

variable. This means that ω̃2
i will produce quadratic binary variables, which is on the

right path of transforming this problem into QUBO.

To finally turn the problem into QUBO, we have to slightly change the cost function.
Since it is now clear that the binary representation of the cost function will be a polyno-
mial of the same rank as the initial expression, there is one constraint in the cost function
that poses a problem, which is:

τ(ωTΣω − σ2
target)

2

Notice how this term contains 4th order polynomial ω4
i terms. This means that the

binary mapped equivalent constraint from the mapping we showed earlier will have 4th

order polynomial binary terms. Problems of this type are referred to as HUBO (Higher
order Unconstraint Binary Optimization). Solving such problems is known to be quite
complicated since they involve order reduction techniques with a substantial number of
overhead bits. In order to avoid this unpleasant and non-optimal situation as well as
increasing the number of binary variables and yet be able to impose the constraint, we
will linearize the portfolio covariance:

τ(kTΣω − σ2
target)

2

Here k is a vector of constants usually referred to as linear weights. This linearization im-
plies that the constraint remains quadratic, but at the price of having to find k somehow.
Different options are possible, like optimizing k in some tensor network algorithms [37].
Another option is to fine-tune k starting from a suitable approximation like for example:

ki =
1

N
for each asset i.

Note that, for the purpose of simplicity, the k vector will remain untouched in the fol-
lowing experiments. The final cost function is:

C(ω) = −rTω + ρ

(
N∑
i=0

ωi − 1

)2

+ τ(kTΣω − σ2
target)

2

ωi = ω̃i + ωmin
i

ω̃i =
1

K

(
Bi−1∑
q=0

2qxi,q +M · xi,Bi

)

Since the problem is now correctly formulated as a QUBO, we can go ahead and imple-
ment it on a quantum computer. However, the number of binary variables is O(N logK).
With K = 100 i.e. 0.01 resolution, which is a reasonable number, the number of binary
variables and, as a result, the number of qubits increases as ≈ 7×N . Even a toy problem
where N = 4 would require approximately 28 qubits. For this reason, this problem will
be executed only on D-wave annealers which can handle up to 5000 qubits, since using
QAOA or hardware-efficient VQA is futile.
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4.3 Implementing on D-Wave Quantum Annealer

Each part of the model will be tested separately to make sure the behavior of the quantum
computer is as expected and possibly figure out any limitations. At the end, the entire
model will be executed using the Hybrid Binary Unconstrained Solver provided also by
D-Wave that can handle a lot more variables. The cost function is separated into 3 parts:

C1(ω) = −rT · ω

C2(ω) = ρ ·

(
N∑
i=0

ωi − 1

)2

C3(ω) = τ ·
(
kTΣω − σ2

target

)2
Testing term 1

For this experiment we consider the average return of AAPL, MSFT, NVDA, and
TSLA from 01-01-2020 to 01-01-2023. The symbols highlited in bold are called tickers
and correspond to Apple, Microsoft, Nvidia and Tesla accordingly. The vector of average
annualized return is:

r =


rAAPL

rMSFT

rNVDA

rTSLA

 =


0.102
0.081
0.180
0.296


The goal is to minimize the cost function C1(ω) = −rTω. There are N = 4 assets (those
described above) and we set ωmax = 1 and ωmin = 0. The resolution is set to K = 105.
This means that we have 15 qubits per asset, totalling 60. Note that this is a trivial
problem, since the cost function is linear and the minimum is very easy to compute. The
values that minimize C1(ω) are ω = [1, 1, 1, 1] and that is true because r > 0 for every i.
This means that the binary variables should all be 1, because of the expression:

ω̃i =
1

K

(
Bi−1∑
q=0

2qxi,q +M · xi,Bi

)
The cost function is minimized in a quantum annealer. Since there are no quadratic
terms here, the qubits do not interact with each other and they are only subject to their
bias. We perform the minimization a total of 100 times. Each experiment performs 100
runs and the total annealing time per run is 20µs. We count the number of times each
variable was measured to be 1 and then we average out by all the number of measurements.
Finally, each qubit’s probability is plotted in a diagram. If the result is 0.8 for a qubit, for
example, this means that in all experiments and all measurements this particular qubit
was ’1’ 80% of the time.
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Figure 4.3: Average probabilities of qubits among 100 experiments with 100 measure-
ments per experiment with 20 us annealing time (K = 105). The expected readout result
of binary variables should be all ’1’.

Notice how most significant bits (right) have a higher tendency of being one than least
significant bits (left). In fact, measurement results from bits 0 to 6 are considered pure
noise since their average tendency is close to 0.5. The reason for this is that the bias
decreases exponentially when moving from most significant to least significant bits. Inter-
estingly enough, we can predict the sequence of the biases from smallest to largest, just
by watching how fast the tendency decays. However, the deviation from the expected
correct result is very small, even though most readout results in the least significant bits
are noisy. This is because the least significant bits do not affect the result of the ω vari-
ables that much. This should provide insight into why we should not increase K too
much. A more modest value, like K = 100, should work just as well.

Figure 4.4: The sum of all ω variables,
∑3

i=0 ωi, is used as a measure of the quality of
the solution. We are expecting all ωi variables to be equal to one, and therefore the total
sum should be 4. We can see that despite the random behavior of the least significant
bits, the quality of the solution is still good.
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Testing term 2

The goal of this test is to check whether or not the constraint C2(ω) is implemented
correctly. Note that

C2(ω) = ρ

(
N∑
i=0

ωi − 1

)2

It is very easy to see that this function is minimized when the sum of ωi variables is
equal to 1. We can therefore use this as a measure of the accuracy. In this benchmark
we consider N = 6. Although it doesn’t matter, we chose ‘TSLA’, ‘AMZN’, ‘AAPL’,
‘MSFT’, ‘GOOGL’, and ‘NVDA’. The ωmax is set to 1 and the ωmin is set to 0. The
resolution is set to K = 100, meaning that there are 7 binary variables per asset, totalling
42 binary variables. We perform a total of 20 experiments with 100 measurements per
experiment. From those measurements, we select the one with the ”minimum energy”
which is returned by the annealer. We plot the cumulative sum of the ωi variables of
the best answer per 100 measurements (top 1%) in each experiment, as well as the ideal
result. Finally, we do this for 20µs and 2ms annealing time to see if there is any difference
between them.

Figure 4.5: Performance tracking of constraint 2. This experiment tracks the result∑5
i=0 ωi, which must be as close to 1 as possible. Performed a total of 20 experiments

with 20 us and 2 ms annealing time.

We observe from the results depicted above that the model behaves as expected and the
total cumulative sum is really close to 1. The annealing time does not seem to have a
huge impact on the results, but this may be because the total number of experiments is
not enough to make objective conclusions. However, 2ms seems to be better, since it’s
peak deviation is smaller than 20µs.
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Testing term 3

The goal of this third and final test is to check whether or not the target volatility
constraint is implemented correctly:

C3(ω) = τ
(
kTΣω − σ2

target

)2
We start by setting N = 6 (the same assets as the previous experiment) and K = 100.
Next, we minimize C3(ω) given several different values of σ2

target: [0, 0.15, 0.20, 0.25,
0.30, 0.40, 0.50, 0.70]. For each of these values, we perform 10 experiments with 400
measurements per experiment with an annealing time of 200µs. We once again select the
answer with the minimum energy which represents the top 0.25% of the answers. Finally,
after the annealing process, we compute, given the best result, the return and volatility,
and we plot them in figure 4.6.

Figure 4.6: Benchmark of the accuracy of finding the target volatilityN = 6 andK = 100.

The x-axis of the left graph is the linearized volatility, which corresponds to the actual
value that was targeted. We observe that most measurements are really accurate with
the exception of target volatilities greater than 60 or smaller than 20. This is probably
due to the fact that this specific portfolio simply cannot produce such volatilities.

The x-axis of the right graph shows the actual volatility. Notice how results are skewed
from the initial target. This is due to the linearization of the volatility that we performed
earlier to transform the problem into QUBO. The shift, however, seems to be linear
and does not distort the target volatility that much, meaning that we might be able to
purposely change σ2

target to accommodate for this error.
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Scalability

Scalability is very important factor that determines any limits in the number of vari-
ables we can run on the annealer. It seems like 140 variables is the limit, where no
accurate solutions can be extracted for constraints C2(ω) and C3(ω). The reason for
this is that the J matrix of the Ising Hamiltonian of these constraints is fully connected.
This poses a serious challenge, as shown by the following image, that we are limited by
either K = 105 and N = 10 or K = 100 and N = 20. These values are toy models
and not real-world scenarios. For this reason, we need to deviate from pure quantum
annealing and use D-wave’s Hybrid Quantum Solver which utilizes heuristic methods in
combination with the annealer.

Figure 4.7: Quantum Processing Unit (QPU - Advantage) usage forK = 105 and N = 10.
The total number of binary variables is 140, but the total number of qubits used is
2833 out of 5760, which translates to 49.18%. The topology of the processor (each
qubit connected with 16 others) limits the scalability of the initial problem (which is
fully connected). To resolve this, chains of maximally coupled qubits are created which
represent only one binary variable (marked with blue).
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4.4 Quantum Amplitude Encoding for VQA

This is a new method for this specific problem we developed in the context of this thesis,
that aims to fix some major issues. The main motivation is that the initial problem is
not binary. Converting it to QUBO we deal with a lot of issues like having a lot of binary
variables and potentially not getting valid results when N is really high. Also violating
constraint C2 gives us wrong answers. Notice how we can encode the ωi variables directly
into the statevector. This method is called amplitude encoding and although it already
exists this new method has a slight variation that is adapted for this specific problem.
Mathematically we can express the statevector as:

|ψ⟩ =
N∑
i=0

√
ωi |i⟩

Notice that the statevector must be normalized. This is a fundamental property of a
quantum system. The probability of measuring a state |i⟩ gives us the ωi variable:

Pr(|i⟩) = ωi

We are guaranteed that
∑N

i=0 ωi = 1, meaning that we can completely remove constraint
C2(ω) from the cost function. The new cost function is:

C(ω) = −rT · ω + τ
(
ωTΣω − σ2

target

)2
Notice how since the statevector doubles in size each time we add a qubit, the number of
qubits grows logarithmically with the input number of assets N .

nqubits = O(log2(N))

Although this may seem good at first, it is highly unlikely that we will be able to reach all
states. We cannot use QAOA or annealing here, since the problem has not been converted
into energy minimization. The only viable algorithm we can use is the hardware efficient
VQA. We already talked about barren plateaus in this algorithm. The combination of
this with the fact that we only have a logarithmic number of optimization variables (L
for each qubit), where L is the number of layers, makes it very unlikely to find good
solutions among the possible statevectors. Another major problem is that we cannot
force diversification.

Luckily we can solve both problems by splitting the initial circuit into 2 circuits with
combined statevector size equal to the number of assets N . This means that by using,
let’s say, n qubits initially to encode all the ω variables into a single statevector, we can
now encode N/2 ω variables into 2 statevectors. The number of qubits this way increases
from n to 2n − 2 (see Figures 4.8 4.9). For example, if we want to find the optimal
portfolio among N = 128 assets initially we would have:

|ψ⟩ =
127∑
i=0

√
ωi |i⟩
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By splitting the statevector into 2 different statevectors we would have:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ =
63∑
i=0

√
ωi |i⟩ ⊗

127∑
j=64

√
ωj |j − 64⟩

Upon measurement of the system, we essentially obtain 2 ωi variables. This implies that
the accuracy of the final measurement increases exponentially, which is also very good.
Other than that each individual circuit has its own normalized statevector. This means
that:

63∑
i=0

ωi =
127∑
j=64

ωj = 1

We can further normalize the combined ω result by dividing by 2. Notice that we created
a natural barrier of ωmax

i = 0.5 and we don’t need to encode any extra penalty constraints.

We can further generalize this to any arbitrary number of splits S and examine the
behavior of ωmax and the total number of qubits used. Since in each split the number
of qubits used per individual circuit decreases by 1 and the total number of individual
circuits doubles, the total number of qubits used is:

nqubits = (log2N − S) · 2S

The ωmax exponentially decreases with each splitting of the statevector, meaning that:

ωmax =
1

2S

This implies that with 3 splittings for example and N = 128 assets we would have 32
total qubits and the upper bound for an ω variable would be 1

8
= 0.125 which is a pretty

good diversification barrier.

Although both initial problems were solved, notice that we still cannot force a lower
barrier ωmin. This is not a huge issue though, since most well-known companies in well-
known markets like the US market do not require a minimum investment to sell their
stocks. Finally, notice that the correlation of the ωi variables decreases exponentially,
since fewer qubits can be entangled, and therefore fewer entangled states can be generated.
This is fine though (as demonstrated by the experiments that follow) as keeping S low
will ensure a balance between the number of entangled states and diversification.
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Figure 4.8: Amplitude encoding for N = 128 and S = 0. In this scenario, the number of
qubits is 7.

Figure 4.9: Amplitude encoding for N = 128 and S = 1. In this scenario, the number of
qubits used is 12. Notice how the circuit can be split into 2 smaller circuits, since there
is no entangling gate between qubit q5 and qubit q6.
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4.5 Results

Amplitude Encoding VQA

The next experiments were executed using the hardware efficient VQA on a quantum
simulator. The hyperparameter τ = 103 and the number of assets is N = 128 with
ωmax = 0.125, ωmin = 0 and S = 3. The total number of qubits used is 32 and the
number of layers is L = 2. There are 10000 shots per circuit execution. The optimization
is performed for target volatilities 10%, 16%, and 20%, with 20 experiments per σ2

target.
In Figure 4.10, we see on the right column the optimized portfolios and on the left column
we see the average cost evolution.

Figure 4.10: Portfolio optimization for target volatility 10%, 16%, and 20% in the first,
second, and third row accordingly.
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Figure 4.11: Comparison between average optimized portfolios for N = 128 stocks se-
lected from S&P500 companies and ωmax = 0.125 for each stock. We see that the opti-
mized results tend to create a line of “Optimal Portfolios” as described earlier (see Figure
4.1). We also observe that target volatility 10% is skewed a lot. That makes sense, since
the dataset is from 01-01-2020 to 01-01-2023 and during the pandemic there was a lot of
variance in the stock market.

Figure 4.12: Sector Distribution of the average optimized portfolio for 20% target volatil-
ity. We can see that with 3 splits and ωmax = 0.125 the optimized portfolio is diversified.
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Hybrid Quantum Annealer

The next experiments were executed on D-Wave - Hybrid Solver. The hyperparameter
values are ρ = 1, τ = 103. The number of assets is N = 128 with ωmax = 0.125 and
ωmin = 0. The total execution time was 15 seconds (hybrid time: classical and quantum).

σtarget (%)
∑N

i=0 ωi

√
kTΣω

√
ωTΣω rTω

10 0.974 0.134 0.138 0.124

16 1.007 0.166 0.192 0.175

20 1.085 0.197 0.271 0.197

Table 4.1: Results of constraints for different risk profiles.

Figure 4.13: Comparison between linearized and actual annual volatility results after
optimization

76



Chapter 5

Conclusion and Future Work

Our results demonstrate that quantum computers could be effectively utilized for solving
real-world applications, particularly in finance. We tried different implementations of
quantum approches, including quantum annealing and variational algorithms, and the
results where consistent with our predictions, indicating good performance of a range of
parameters. However, it is crucial to highlight that we did not compare our outcomes with
existing classical methods for addressing such challenges due the early stages of available
clould quantum hardware at the moment. Although classical optimization techniques
might at the moment still surpass our results, it’s encouraging to observe that quantum
computers can in principle tackle such problems, with the potential to surpass classical
machines in the not so distant future (tens of thousands of qubits compared to the few
hundred available now). The fundamental different way of processing information at the
quantum level, the potential for major speed ups in certain applications, make working
in this field an exciting endeavour.

After we introduced the basic tools of quantum quantum computing and quantum op-
timization in chapters 1 and 2, in chapter 3, we addressed two separate mathematical
problems, the Subset Sum and the Travelling Salesman Problem and carried out tests to
contrast the different quantum optimization methods. Even though QAOA is asymptot-
ically superior to VQA, contemporary use cases seem to derive greater benefits from the
hardware-efficient VQA since it is more robust and less susceptible to noise. We observed
that D-Wave’s quantum annealers, along with their hybrid solvers, currently stand out
as the most effective methods for optimization challenges. In collaboration with Prof.
Angelakis and industry partners, I am currently exploring various R & D projects in this
direction in the field of quantum optimization, which will be an exciting follow up to this
work.

As we delve deeper into the intricacies of quantum computing, there’s a promising avenue
to further explore the formulation of optimization problems using QUBO and their exe-
cution on quantum platforms. One notable area of interest is route optimization, which
holds immense significance in global commerce. By optimizing routes, industries stand
to reap substantial time and cost savings, especially in the domains of transportation
and logistics. Another crucial aspect is scheduling, a facet integral to a vast range of
sectors from manufacturing plants to service industries. Efficient scheduling can be a
game-changer in enhancing productivity and optimal resource allocation. Additionally,
the realm of resource management optimization presents itself as a potential goldmine
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of research opportunities. Whether it’s human resources, material assets, or financial
allocations, effective resource management can drastically influence an organization’s
profitability and operational efficiency.

Interestingly, the global corporate landscape is buzzing with curiosity about quantum
computing. Numerous enterprises are keen to assess the capabilities of quantum comput-
ers in possibly providing faster solutions or even superior alternatives to their existing
problem-solving methodologies. Collaborating with such businesses in our subsequent
research endeavors could not only present us with tangible real-world challenges but also
enable a practical evaluation.

It’s safe to say that we’ve entered the quantum era. Quantum computers have become
increasingly accessible through cloud services, and their popularity continues to grow with
rising investments. Leading commercial producers, primarily IONQ and D-Wave, are
making promising strides in fault-tolerant hardware and optimization-centric hardware
respectively. Nonetheless, algorithms with established enhancements, such as Shor’s or
Grover’s, might remain elusive for some years to come
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Appendix A

Mathematical Proofs

Proof 1 Subset sum cost function to Ising Hamiltonian.

C(x) =

(
N∑
i=0

ai · xi − S

)2

=

(
N∑
i=0

ai · xi

)2

− 2S

(
N∑
i=0

ai · xi

)
+ S2

C(x) =
N∑
i=0

N∑
j=0

ai · aj · xi · xj −
N∑
i=0

(2S · ai · xi) + S2

Next we substitute xi =
si+1
2

in the equation.

C(s) =
N∑
i=0

N∑
j=0

ai · aj ·
si + 1

2
· sj + 1

2
−

N∑
i=0

(
2S · ai ·

si + 1

2

)
+ S2

C(s) =
1

4

N∑
i=0

N∑
j=0

ai · aj · (si + 1) · (sj + 1)− S
N∑
i=0

ai · (si + 1) + S2

C(s) =
1

4

N∑
i=0

N∑
j=0

ai · aj · (si · sj + si + sj + 1)− S
N∑
i=0

(ai · si + ai) + S2

C(s) =
1

4

N∑
i=0

N∑
j=0

(ai ·aj · si · sj +ai ·aj · si+ai ·aj · sj +ai ·aj)−S

N∑
i=0

ai · si−S

N∑
i=0

ai+S
2

Next we ignore the constant term:

1

4

N∑
i=0

N∑
j=0

aiaj − S

N∑
i=0

ai + S2

After this, the cost function becomes:

C(s) =
1

4

N∑
i=0

N∑
j=0

(aiajsisj + aiajsi + aiajsj)− S

N∑
i=0

aisi
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Notice the following relations:

N∑
i=0

N∑
j=0

aiajsi =
N∑
i=0

N∑
j=0

aiajsj = K

N∑
i=0

aisi

where K is the sum of all numbers:

K =
N∑
i=0

ai

Therefore, the equation simplifies to:

C(s) =
1

4

N∑
i=0

N∑
j=0

aiajsisj − (S − K

2
)

N∑
i=0

aisi

Finally, we can further simplify this equation because Jij and Jji are equal, and
therefore we can add them together:

C(s) =
1

2

N∑
i=0

N∑
j=i+1

aiajsisj − (S − K

2
)

N∑
i=0

aisi

The J matrix and h vector obtained by this equation are:

Jij =
1

2
aiaj, with N > i > j ≥ 0

hi = −ai(S − K

2
), with N > i ≥ 0
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Proof 2 Linear return term to Ising Hamiltonian.

C1(ω) = −rTω = −
N∑
i=0

riωi ωi =
1

K

(
Bi−1∑
q=0

2qxi,q +Mixi,Bi

)

Next we substitute ωi in the initial cost function C1(ω) to get:

C1(x) = −
N∑
i=0

ri ·
1

K

(
Bi−1∑
q=0

2qxi,q +Mixi,Bi

)
= −

N∑
i=0

Bi−1∑
q=0

ri
K

· 2qxi,q −
N∑
i=0

ri
K

·Mixi,Bi

Next we change into spin basis by substituting x = 1+s
2
:

C1(s) = −
N∑
i=0

Bi−1∑
q=0

ri
K

· 2q · 1 + si,q
2

−
N∑
i=0

ri
K

·Mi ·
1 + si,Bi

2

Next, we ignore the constant terms to get:

C1(s) = −
N∑
i=0

Bi−1∑
q=0

ri
2K

· 2q · si,q −
N∑
i=0

ri
2K

·Mi · si,Bi

Finally, we can obtain the coefficients hi,q of the Ising model:

hi,q =

{
−ri · 1

2K
· 2q if q ̸= Bi

−ri · 1
2K

·Mi if q = Bi

Proof 3 Normalization constraint term to Ising Hamiltonian.

C2(ω) = ρ

(
N∑
i=0

ωi − 1

)2

ωi =
1

K

(
Bi−1∑
q=0

2qxi,q +Mixi,Bi

)

First, we break down the square and ignore the constants to get:

C2(ω) =

(
ρ

N∑
i=0

ωi

)2

− 2ρ
N∑
i=0

ωi = ρ
N∑
i=0

N∑
j=0

ωiωj − 2ρ
N∑
i=0

ωi

Substituting the expression for ωi and ωj into the equation, we get:

C2(x) =ρ
N∑
i=1

N∑
j=1

 1

K

(
Bi−1∑
q=1

2q−1xi,q +Mixi,Bi

)
· 1

K

Bj−1∑
r=1

2r−1xj,r +Mjxj,Bj


− 2ρ

N∑
i=1

1

K

(
Bi−1∑
q=1

2q−1xi,q +Mixi,Bi

)
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C2(x) =
ρ

K2

N∑
i=1

N∑
j=1

Bi−1∑
q=1

Bj−1∑
r=1

2q−1xi,q2
r−1xj,r

+
ρ

K2

N∑
i=1

N∑
j=1

[
Bi−1∑
q=1

Mjxj,Bj
2q−1xi,q

]

+
ρ

K2

N∑
i=1

N∑
j=1

Bj−1∑
r=1

Mixi,Bi
2r−1xj,r

+
ρ

K2

N∑
i=1

N∑
j=1

Mixi,Bi
Mjxj,Bj

− 2
ρ

K

N∑
i=1

[
Bi−1∑
q=1

2q−1xi,q

]
− 2

ρ

K

N∑
i=1

Mixi,Bi

C2(s) =
ρ

K2

N∑
i=1

N∑
j=1

Bi−1∑
q=1

Bj−1∑
r=1

2q−1 si,q + 1

2
2r−1 sj,r + 1

2

+
ρ

K2

N∑
i=1

N∑
j=1

[
Bi−1∑
q=1

Mj

sj,Bj
+ 1

2
2q−1 si,q + 1

2

]

+
ρ

K2

N∑
i=1

N∑
j=1

Bj−1∑
r=1

Mi
si,Bi

+ 1

2
2r−1 sj,r + 1

2

+
ρ

K2

N∑
i=1

N∑
j=1

Mi
si,Bi

+ 1

2
Mj

sj,Bj
+ 1

2

− 2
ρ

K

N∑
i=1

[
Bi−1∑
q=1

2q−1 si,q + 1

2

]
− 2

ρ

K

N∑
i=1

Mi
si,Bi

+ 1

2

C(s) =
ρ

4K2

N∑
i=1

N∑
j=1

Bi−1∑
q=1

Bj−1∑
r=1

2q−1 · 2r−1 · si,q · sj,r

+
ρ

4K2

N∑
i=1

N∑
j=1

Bi−1∑
q=1

Bj−1∑
r=1

2q−1 · 2r−1 · sj,r


+

ρ

4K2

N∑
i=1

N∑
j=1

Bi−1∑
q=1

Bj−1∑
r=1

2q−1 · 2r−1 · si,q

+
ρ

4K2

N∑
i=1

N∑
j=1

[
Bi−1∑
q=1

Mj · 2q−1 · sj,Bj
· si,q

]

+
ρ

4K2

N∑
i=1

N∑
j=1

[
Bi−1∑
q=1

Mj · 2q−1 · si,q

]
+

ρ

4K2

N∑
i=1

N∑
j=1

[
Bi−1∑
q=1

Mj · 2q−1 · sj,Bj

]

+
ρ

4K2

N∑
i=1

N∑
j=1

Bj−1∑
r=1

Mi · 2r−1 · si,Bi
· sj,r

+
ρ

4K2

N∑
i=1

N∑
j=1

Bj−1∑
r=1

Mi · 2r−1 · sj,r


+

ρ

4K2

N∑
i=1

N∑
j=1

Bj−1∑
r=1

Mi · 2r−1 · si,Bi

+
ρ

4K2

N∑
i=1

N∑
j=1

Mi ·Mj · si,Bi
· sj,Bj

+
ρ

4K2

N∑
i=1

N∑
j=1

Mi ·Mj · sj,Bj
+

ρ

4K2

N∑
i=1

N∑
j=1

Mi ·Mj · si,Bi
− ρ

K

N∑
i=1

[
Bi−1∑
q=1

2q−1 · si,q

]

− ρ

K

N∑
i=1

Mi · si,Bi
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