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Abstract

We propose a novel hybrid platform where solid-state spin qubits are coupled to the acoustic modes of
atwo-dimensional array of optomechanical (OM) nano cavities. Previous studies of coupled OM
cavities have shown that in the presence of strong optical driving fields, the interplay between the
photon-phonon interaction and their respective inter-cavity hopping allows the generation of
topological phases of sound and light. In particular, the mechanical modes can enter a Chern insulator
phase where the time-reversal symmetry is broken. In this context, we exploit the robust acoustic edge
states as a chiral phononic waveguide and describe a state transfer protocol between spin qubits
located in distant cavities. We analyze the performance of this protocol as a function of the relevant
system parameters and show that a high-fidelity and purely unidirectional quantum state transfer can
be implemented under experimentally realistic conditions. As a specific example, we discuss the
implementation of such topological quantum networks in diamond based OM crystals where point
defects such as silicon-vacancy centers couple to the chiral acoustic channel via strain.

1. Introduction

In recent years the efforts towards building scalable quantum information processing devices have reached
unprecedented intensities. For this purpose, a number of physical platforms, such as superconducting circuits
[1], cold atoms in optical lattices [2, 3], trapped ions [4], Rydberg atoms [5] and defect centers in solids [6—10],
are actively investigated. In parallel, various strategies for implementing hybrid quantum systems are currently
explored [11-13], with the long-term goal to combine the strengths of the different architectures and to mitigate
system-specific weaknesses. In this context, high-Q mechanical elements play a particularly important role for
realizing coherent quantum interfaces [ 14-21] as they can be coupled efficiently to a large variety of other
quantum systems [22] while being themselves only weakly affected by decoherence. Similar to optical fields,
acoustic waves can be guided along coupled resonator arrays or continuous phononic waveguides [23-25],
which can be used to implement chip-scale quantum networks where quantum information is distributed via
individual propagating phonons [23, 26-29]. In particular, such phononic quantum channels have been
proposed to overcome the problem of coherently integrating a large number of electronic spin qubits associated
with defect centers in diamond [14, 28, 30-34]. However, being in its infancy, the control of acoustic waves on
the quantum level still faces many challenges, which must be met both on an experimental and on a conceptual
level. This includes, for example, the scattering of phonons along the channel by fabrication imperfections, but
even more fundamentally, the ability to emit phonon wavepackets with a specified shape and direction, as a
prerequisite for many quantum state transfer protocols [35].

In this work we propose and analyze an hybrid phononic quantum network, where spin qubits or other two-
level systems (TLS) are coherently coupled to the chiral acoustic edge channels of a two dimensional (2D)
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Figure 1. Schematics of the 2D hybrid system and the state transfer protocol. (a) OM cavities engineered from smooth alterations of a
snowflake-hole patterning in diamond. The cavities are arranged in a Kagome structure where the unit cells include a basis of three
sitess = {A, B, C}. ATLS is embedded in every site. The phase pattern {6} induced by the optical driving generates a flux & upon
hopping anti-clockwise through a unit cell. (b) Energy structure of the SiV ground-state subspace where the two lowest-energy states
|1) and |2) form along-lived spin qubit. A microwave drive 2(¢) couples opposite spin states while the strain associated with a single
phonon couples the orbital degrees of freedom |e,.) with strength g.. The combination of the two processes leads to a tunable
interaction between the spin states and phonons of frequency ~w. (c) State transfer between distant TLS via topologically protected
chiral acoustic waves propagating along the boundaries of the structure.

optomechanical (OM) array [36—41]. This architecture is motivated by the progress in engineering spin-phonon
interactions in solid-state systems [42—49], as well as in fabricating 2D OM crystals [50-53] with different
geometries and band structures. In a previous work [54] it has been shown that 2D OM arrays can exhibit a rich
set of topological phases of sound and light that can be fully explored by tuning i situ the optical driving of the
cavities. In particular, for weak OM interactions, the acoustic excitations are expected to enter a Chern insulator
phase where chiral edge states propagate along the array boundaries. Thus this hybrid quantum system offers a
platform to study rich physics emerging from the interplay between spins, mechanical and optical degrees of
freedom in phases where time-reversal symmetry is broken.

As afirst application for this setup we focus on the quantum-state transfer between TLS located in distant
cavities via chiral acoustic edge channels. Compared to state transfer protocols in regular 1D phononic
waveguides [23, 26, 28, 29], this platform offers the advantages of a unidirectional propagation [35, 55-57],
which is robust against local perturbations and where the direction can be controlled by external optical driving
fields. While the basic protocol discussed in this work is very general, a naturally-suited system where these ideas
can be implemented is an array of separated silicon vacancy (SiV) centers in a diamond OM crystal. In this case,
quantum information can be stored in the long-lived spin degrees of freedom of the SiV ground state [58—62],
where at low temperatures of T < 1 K coherence times exceeding T, ~ 10 ms have been demonstrated [61, 62].
At the same time the orbital degrees of freedom of the defect allow strong and tunable coupling to vibrational
modes, as recently discussed in [28]. Combined with the ability to design chiral acoustic channels via OM
interactions this coherent spin-phonon interface offers many new tools to overcome fundamental challenges in
phononic quantum network applications.

2. Model

We consider a 2D array of OM cavities as depicted in figure 1, where each lattice site contains a single TLS. The
OM array can be realized, for example, in so-called ‘snowflake’ structures [63], where high-Q vibrational and
optical modes are co-localized in regions of engineered defects created by smoothly varying the size of the
patterned periodic snowflake holes (see figure 1(a)).

Ateach lattice site j, the variation in the index of refraction due to mechanical Vibrations leads to a strong OM

coupling that can be described by the standard OM Hamiltonian Hom /7% = wy b b + wal zi]

AT A

+8,4; 4 (bj + bj ) [64]. Here d; (bj) represents the annihilation operator of the photonic (phononic) mode of
frequency w, (way) and gy is the OM coupling per photon. Due to the stronglocalization of both photons and
phonons, this coupling can reach values of about gy ~ 250 kHz [52], which we will assume for all the following
estimates. The optical cavities are driven by a strong external laser field of frequency wy, which drives each optical
mode into a coherent state with amplitude o;(t) = (/nc ellie~1! wheren, >> 1is the mean intracavity photon
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number. By redefining a; — a; + «;(t), the OM interactions can be linearized and in a frame rotating with wy,
the resulting Hamiltonian for the whole 2D OM array is given by (A = 1)

Home = Y @nb; b — Mala; + Gel%al b + Ge b a) + S (Kb, by + Jaja; + h.c). (1)
i (i)

Here] > 0(K > 0) denotes the nearest-neighbor photon (phonon) hopping rateand A = w; — w¢ < Oisthe
detuning between the cavities and the drive. In equation (1), G = g, /7, is the linear OM coupling, which is
enhanced by the number of photons in a cavity. The sign of  and K depend on the details of the design of the OM
defect cavities. The case J, K < 0 (without TLS) is discussed in [54]. Here, we explore the different scenario
where J, K > 0. Below we show that this choice leads to a more favorable scaling of the topological band gaps and
the required input power. At this stage, we consider all parameters identical throughout the lattice except for the
driving phases ;. Note that in equation (1), we made an additional rotating-wave approximation by neglecting
processes that do not conserve the number of excitations (~Ge~a;b; + h.c.). The validity of this
approximation is discussed in appendix A.

In addition to the localized optical and mechanical modes, we consider a TLS embedded in each sites of the
array, which is coupled to the acoustic vibrations via strain. We model the interaction by a Jaynes—Cumming
coupling with time-dependent strength &sp (D such that the effective Hamiltonian describing the full hybrid 2D

array reads

A = Houc + 3 %&y) + 2180 56 + h.c.]. Q)
j j
Here w is the transition frequency of the TLS, 4, is the usual Pauli-Z operator and & ¥ = &f )" destroys a spin
excitation in sitej.

While the spin-phonon coupling assumed in Hamiltonian (2) is very generic and could be realized with
various types of TLS[16, 22, 26], we explicitly consider the example of SiV centers in diamond in our following
analysis. As depicted in figure 1, the electronic ground-state manifold of this center consists of two long-lived
spin states denoted by |1) and |2), which can be coupled to a mechanical vibrational mode via a microwave
assisted Raman process involving the excited state |3). More precisely, the strength of the time-dependent spin-
phonon coupling g (r) = €(t)g, /6 and the qubit frequency wy can be externally tuned via the microwave drive
amplitude Q(¢) and detuning § compared to the state | 3), respectively. Here g; is the intrinsic strain coupling
between the state | 1) and |3). See appendix B, for more details about SiV defects and their strain coupling.

3. Acoustic edge channels

The main purpose of considering a 2D OM array instead of a simple 1D phononic waveguide is to use the OM
interaction for engineering topologically protected acoustic edge channels, along which phonon propagation
becomes unidirectional and immune against local disorder. As first proposed in [54], such a scenario can be
achieved by imposing a non-trivial pattern of the driving phases j, which mimics the presence of a strong
effective magnetic field. Similar to electronic systems in real magnetic fields, the resulting bandstructure of the
OM crystal may then exhibit topologically protected bands with a non-trivial Chern number, which for a finite
system are associated with left- or right-propagating edge modes. In contrast to [54], we here consider a different
band structure which leads to much larger topological gaps in presence of weaker optical driving power.

3.1. Topological phases of sound in an OM Kagome lattice

While chiral acoustic edge channels can be implemented with various different OM lattice geometries, we here
exclusively focus on the Kagome lattice for which topological phases of sound and light have already been
described in [54]. The Kagome crystal structure (see figure 1) is defined by a triangular Bravais lattice spawned by
the unitvectors {R; = —(1, v/3)a, R, = (2, 0)a}anda three-cavity basis given by {7y = (0, /3 /2)a,

= —(1/2, V3 /2)a, % = (1/2, —+/3 /2)a}. Here ais the distance between two adjacent cavities and { A, B,
C} refer to the different cavities within a unit cell. This structure possesses the full Cg, symmetry of the
corresponding Bravais lattice.

In absence of the external driving fields, i.e. G = 0, the OM crystal system is time-reversal symmetric and
contains six energy bands. The three acoustic (optical) bands are centered around wy; (—A) and have a total
width of 6K (—6]). A zoom in of the non-interacting band structure in a spectral range that includes all acoustic
bands but exclude far detuned optical modes is shown in figure 2 (a). We see that the Cg and time-reversal
symmetries impose essential degeneracy at the high-symmetry points of the Brillouin zone, i.e. K = (27/34,0)
and K’ = (7/3a, 7/+/3 a), where Dirac cones are formed, and at T' = (0, 0), where a quadratic band-crossing
point appears. Importantly, one of the optical (mechanical) bands is flat. This feature reflects the existence of
localized normal modes describing a standing wave where the six cavities along the edges of the same Wigner—
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Figure 2. OM band structures. (a) Dispersion relation of the non-interacting OM system (G = 0), where the three lowest-energy
bands represent mechanical modes while the highest-energy band is optical in nature. The drive detuning here is

A = —wy — 2] — 4K, whichleadsto éop = 3K, and J/K = 200. (b) Dispersion relation alongthepathI' - K — M; — K/ — T
in the Brillouin zone [depicted in (a)] for G = 2K, 6oy = 3K and J/K = 200. The black arrows indicate the dominant angular-
momentum conserving OM interactions responsible for the gap. The Chern numbers C;associated with the two lowest-energy
mechanical bands are shown.

Seitz cell are excited with equal amplitude but alternating sign. More details about the diagonalization of the OM
Hamiltonian in the quasi momentum space are given in appendix C.

For finite driving of the OM cavities (G = 0) the acoustic and photonic bands hybridize. Following [54], we
choose the pattern of phases AQ = 0y — 04 = Oc — 0 = 04 — Oc = 27 /3 for every unit cells. In other
words, we consider a driving of one of the optical modes at the I" point. Such phase pattern can be generated by
simply using three optical drives pointing at 120° angle from each others [54] (see figure 1(a)). Most importantly,
it breaks the time-reversal symmetry without breaking the spatial symmetries of the Kagome lattice and, thus,
lifts the essential degeneracies giving rise to topological band gaps [65].

Here, we focus on the weak OM coupling limit where the detuning of all optical modes is larger than the OM
coupling,i.e. G < |wy + A + 2|, such that all the excitations are still almost phononic or optical in nature. In
this regime, the existence of topologically non-trivial phases for sound can be understood from the fact that
phonons can also hop to neighboring lattice sites through virtual optical excitations. In the conceptually simplest
setting where the optical bandwidth is small compared to the detuning, ] < |wys + A, this hopping is
restricted to nearest neighbors and has an amplitude

KOoPt ~ GizjeiiAé,-j. (3)
! (wum + A

Since the resulting overall phonon hopping amplitude, K, ijff =K+ K i;-’Pt, then becomes a complex quantity, a
phonon moving anti-clockwise around a crystal unit cell basis (i.e. A — B — C — A) acquires a phase
& = +3arctan — 20
JG? — 2K (A + wyr)?
represents the normalized magnetic flux encircled by the three cavities of the basis [66]. Note that the total flux
within a Bravais unit cell is zero as moving anti-clockwise over an hexagonal path leads to a phase shift of —2®
(see figure 1(a)), simulating what is known as the anomalous quantum Hall effect [65]. In a more realistic
situation, as considered in this work, the optical hopping rate is larger than the detuning, i.e. J 2 |wy + Al.In
this case, the same intuition holds but the optically-induced phonon hopping becomes longer-ranged and one
must resort to a full numerical evaluation of the band structure, as exemplified in figure 2(b). Finally, in this
same limit with K < J, the corresponding flux @, experienced by the light field remains negligible, thus
suppressing any non-trivial topology of the optical field.

We note in passing that synthetic magnetic fields for vibrations in a phononic crystal can also be generated by
purely geometrical means as described in [67]. This scenario is, however, fundamentally different as no breaking
of the time-reversal symmetry takes place. This underlying symmetry is imprinted in the magnetic field that has
opposite signs in the K and K’ valleys. This type of time-reversal preserving synthetic magnetic field is usually
referred to as a pseudomagnetic field. We emphasize that pseudomagnetic field induced edge states have a time-
reversed counter-propagating partner. Therefore, there is no protection against back scattering by lattice scale
disorder and a two-level defect will couple to both channels with approximately equal strength.

. This is reminiscent of a charged particle moving in a magnetic field where ®

3.2. Topological gaps

The breaking of time-reversal symmetry opens gaps between the acoustic bands, bringing the vibrational
excitations into a Chern insulator phase. This is confirmed by computing the topological invariant, known as the
Chern number [66], C, = i J};Z &2k [(Ok,mi |0k, mg ) — (Ok mi |0k, my )] for eachacoustic band n with
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Figure 3. Topological gap. (a) Topological gap size € as a function of G and the detuning éop for J/K = 200. The upper white line
represents G, (see equation (5)) and the bottom one shows the minimal OM coupling G, for which € reaches K. (b) Gap size asa
function of oy for G/K = 1.5and G/K = 2.0 with J/K = 200.

energy eigenstates |y ). Here the integral is performed over the first Brillouin zone. For the two lowest-energy
mechanical bands, one finds C; = 1and C, = 0 (see figure 2(b)).

As shown in figure 2(b), for weak OM interactions the gaps open at the symmetry points K and K’, while for
larger couplings, competing processes taking place with quasi momentum near the high-symmetry points

M, = %(1 , —%), M, = —i(l , %) and M5 = %(0, —%) close the gap again. The dominant OM
processes allowed by the conservation of angular momentum can be captured using a simple analytic model

from which one accurately predicts the band gap

2
€= Min[(SOTM[ 1+ ? - 1], K} ©)

6OM

for G < G, where
G:/K = \380m/2K, ®)

is the critical coupling above which the gap decreases (see appendix D). Here 6opy = —A — 2] — wyy — Kis
the detuning between the lowest optical band and the mechanical Dirac points in the noninteracting limit (see
figure 2(b)).

From the above expressions it follows that the band gap e reaches the maximum value ¢ = K for a detuning
bdom above the threshold 6 S’M = 2K and driving strengths in a finite range G, < G < G, where
Gmin = VK? + SomK. In figure 3(a), we show e as a function of 6o and G while explicitly indicating G, and
Gin- In panel (b), we show € as a function of G for 6pp; /K = 1.5, 2.0. For experimentally relevant phonon
hopping rates K/27 ~ 100 MHz, the minimal coupling Gy, &~ +/3 K at threshold 63, is reached with a
number of intra-cavity photons n. ~ 0.75 X 10°. While generally challenging, we note that recent experiments
suggest that diamond structures [68] are more compliant to stronger drives compared to silicon-based systems
[50-53].

3.3. Edge channels

For a finite size system, the existence of separated energy bands with non-trivial Chern number is associated with
aset of topologically protected chiral edge states, which propagate along the boundaries of the OM array.
Specifically, the difference between the number of such edge states propagating clockwise and anti-clockwise is
given by the sum over the topological invariant C,, associated with all lower-energy bands.

To study in more detail the properties of these edge channels in the present setup, we consider in figure 4(a) a
stripe of infinite length along x with straight edgesaty = 0and y = —(N, — 1) 3 a.Here N, is the number of
unit cells along R, and the upper straight boundary is obtained by excluding the cavities A of all cells at y = 0. For
this geometry, the full OM crystal Hamiltonian Hopc in equation (1) can be diagonalized within each quasi-
momentum k, subspace, allowing us to capture the dispersion relation and the structure of the edge states
localized at the boundaries. Details of the diagonalization are presented in appendix C. In figure 4(b), we show an
example of the mechanical band structure as a function of k, for G = 2K, o = 3K and A9 = 37/2. On the
upper boundary, a single edge state is present and its dispersion relation wg (k,) is shown by the black curve
crossing the gap for m/2 < k,a < 7. The group velocity of phonons propagating along this channel is given by
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Figure 4. Topologically protected edge states. (a) Schematic of an infinite 1D stripe along x with straight boundaries. (b) An example of
the dispersion relation of the OM modes of the infinite stripe with N,, = 21 unit cells along R}, G = 2Kand 6oy = 3K. The edge-state
frequencies wg(k,) are highlighted in black and the resonance frequency of the TLS, wy, is shown in red. The edge mode propagating on
the upper (lower) edge is labeled U (L). (¢) and (d) Optical fraction of the edge state evaluated at k, [shown in panel (e)] as a function of
Gand 6opp. The black lines in (¢) indicate the value of G, and the value of G,y,;,.. (f) Penetration depth £(k,) of the edge states asa
function of 6o for G/K = 1.5and G/K = 2.0. (g) Group velocity v, of the edge state propagating along the upper boundary

(/2 < kya < m)evaluated at kg as a function of 6oy for G/K = 1.5and G/K = 2.0.Inall figures, the photon hopingis J/K = 200.

Owg (ky)
ik = =252, ®
and is positive for the phase pattern A9 = 37/2. The situation is completely symmetric for the edge state at the
lower boundary: its energy crosses the gap for 0 < k,a < /2 and ithas a negative group velocity.

For the purpose of using such edge modes as phononic quantum channels, two other key properties must be
taken into account: their penetration depth into the bulk and how strongly they are hybridized with the optical
bands. The latter plays an important role for dissipation and the former characterizes how strongly the edge
modes couple to the TLSs. In general, we can write the annihilation operator for an edge-state excitation with
quasi-momentum k, as

bp(ky) = e et 9 ® ug (k) by (k) + (ki) dg k)], )

s,m

where Es,m (kx) [s,m (ky)]is the phononic (photonic) annihilation operator acting on the basis s = {A, B, C} of
the mth unit cell along R, with quasi-momentum k,. The upper boundary corresponds to m = 0. The
coefficients u(k,) and v, (k,) are the respective mechanical and optical probability amplitudes, £(k,) is the
penetration depth and ¢,,,(k,) is a generic phase. We define the optical fraction of the edge state as

2

Ppi(ky) = 'V(k—_)L <1, (8)
s 1 — et

where the upper bound is set by the normalization condition.

In the view of a state transfer between TLS embedded in the outermost cavities along the boundaries of the
array, we are mostly interested in the edge-state excitation that lies within the gap and has the smallest
penetration depth and photonic amplitude. This condition motivates us to define kg such that u, (ko) is maximal
(see figure 4(e)), where s, represents the outermost cavities along the boundary. In figure 4, we show the optical
fraction, the penetration depth £(k,) and the group velocity, all evaluated for k, = ko. We finally note that for the
straight edges considered, i.e. where only the cavities B and C form the outermost layer of the boundaries, no A
cavities throughout the crystal supports an edge mode (i.e. uy = 0).

We conclude this section by noting several important differences between the results presented here and
those in [54]. In this work, we consider positive hopping amplitudes K > 0and] > 0 which results in inverted
dispersion relations compared to [54]. As a consequence, the lowest-energy optical band is flat (for G = 0). This
feature changes qualitatively the OM interaction. In particular, the band gap € and the optical fraction P
become independent of ] for large J /6onm. In contrast, these quantities are suppressed as \/K—/] and K/]J,
respectively, for negative hopping amplitudes [54]. Since J /K ~ 10%is of the order of the ratio between the
speed oflight and sound in the material, this allows us to reach much larger band gaps at the expense of larger
optical fraction. Finally, for positive hopping amplitudes, the driven optical mode coincides with the lowest-
energy band, such that the detuning from the drive frequency is considerably smaller than for the case of the
highest-energy band considered in [54]. Due to this reduction of the detuning by about 6] ~ 100 GHz, the
necessary power of the external drive to reach n, ~ 10°is strongly reduced.
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Figure 5. State transfer protocol. (a) Schematic of the state transfer over eight cavities around a corner for two scenarios: (1) G = 2K,
Som = 4Kand Q¢ = 5 x 107 (solid lines) and (2) G = 2K, o = 20K and Q¢ = 107 (dashed lines). (b) Time dependent coupling
rates for the emitting and receiving defects. The emitting pulse is identical in both scenarios (black solid line). (¢) The phase of the
receiving pulses. (d) Amplitudes of the TLS as a function of time. In all figures, we have considered wy;/K = 460, wc /K = 2 x 106,
J/K = 200 and gs‘;"”‘ /K = 0.06.

4. Quantum state transfer

So far, we have focused solely on the OM cavities without considering finite couplings to the TLS. In this section,
we exploit the time-dependent spin-phonon coupling g,,(t) and the acoustic chiral edge states to transfer an
arbitrary quantum state between any pairs of TLS embedded in distant cavities along the boundaries of the
structure.

In this protocol, only the emitting (e) and receiving (r) defects are driven, i.e. only gs(;) (t) = Owithl = {e,
r}, while all the other undriven centers are far off-resonance with any mechanical excitations. We also consider a
low-temperatures environment T < /iy /kg (correspondingto T' < 1 K for SiV centers) in which case the
system remains in the single excitation subspace. Finally, we account for dissipative processes by including
photon and phonon loss in every cavities of the crystal. We denote by k¢ = wc /Qc (kar = wig/Qyy) the photon
(phonon) decay rate where Qc (Q,) is the optical (mechanical) quality factor. By restricting the dynamics to the
single-excitation subspace, we can account for losses by simply considering a non-unitary time evolution by
substituting —A — —A — ik¢ /2 (wy — wy — 1Ky /2)inequation (2).

4.1. Markovian channel

In the limit of weak spin-phonon couplings [gs(;) (t) < K], the topological phase of sound described in the
previous section is approximately unperturbed by the TLS. Moreover, for resonance frequencies wy of both TLS
deep within the topological band gap, the defects only couple efficiently to the acoustic edge modes. In this limit,
the coherent dynamics of the state transfer protocol can be described by the effective Hamiltonian

N Af A N 1 . .
He®) = Y wr®by Wbt + 3 2260 + — 3" 3" [¢D1)6Vbp (k) et + hel, ©)
k I=e,r 2 \/N k Il=er

where k and n; represent the quasi-momentum of the edge state and the position of the TLS /along the edge of N
cavities, respectively. The effective spin-phonon coupling ge(flf) () = ug (k)ema/R)=id, (*) gs(;) (t) depends on the
distance of the defect from the boundary (m;) and captures the properties of the edge modes previously derived
in the context of the semi-infinite stripe. Although the structure supporting the state transfer is a finite 2D crystal
(see figure 5(a)), equation (9) is valid for defects positioned far from any dislocations, e.g. a corner. Similarly, one
can estimate the decay rate of the chiral channel as kg (k) = |u* ki / [1 — e 20/¢0] 4 Pypi (k) k. For the
scenarios considered in this work, where the mechanical frequencies are in the GHz regime while the optical
modes are in the hundreds of THz, k¢ /Ky ~ we/wy ~ 10% in cases of similar quality factors. Asa
consequence, the optically induced decay rate is expected to exceed by far the intrinsic mechanical loss.
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Considering the single-excitation ansatz

[0(0) = al0) + Be 0! [a ()5 + a, ()8 + 3 a(t) by (0)1]0), (10)
k

where |0) represents the vacuum state with both centers being in their lowest-energy state and no acoustic
excitations in the waveguide, a perfect transfer of an arbitrary state corresponds to a.(t)) = a,(tf) = land
a.(tr) = a,(ty) = 0.Here tyand tare the initial and final times of the protocol, respectively. In the case where
the TLS see a constant density of states of the acoustic modes, it is possible the apply the standard Born—-Markov
approximation to the Schrédinger equation i/ 9, (¢)) = Hy () |1 (1)) (see appendix E), leading to the
followinglocal equations of motion

Oae) = - 2a(e) — A OF,, (0 (an
Here, the transfer rate between the chiral wavegmde and the defects is
D)2
ey = 2SO0 (12)
ve/a

with v, = v, (ko) and 0;(¢) = arg[g(l)(t)] The input field of the receiving node s f .(t) = f .. (t—Tp)ei‘/’p with
7pand ¢, the time and phase acquired during the propagation from the emitter to the receiver. In the case of a
perfectly straight edge, 7, = 2(n, — n.)a/v, and (bp = ko2(n, — n,)a. The strategy to achieve a high-fidelity
state transfer is to control in time g(') (t) in order to suppress the output field

fourr () = fin, () + (¢t e 1M g, (t) of the receiver. Thus in this idealized limit, the state transfer-problem
becomes equivalent to the scenario discussed in the original work by Cirac et al [35] and similar optimized pulse
shapes can be used to achieve close-to-unity state transfer fidelities. The main limitation then arises from
propagation losses and the ratio between the TLS decoherence rate and the maximal transfer rate vy, that one
can reach in a specific implementation.

4.2. Exact evolution

While the above description properly highlights the physics underlying the state-transfer protocol, it becomes
exact only for extremely weak couplings to perfect Markovian 1D channels. In contrast, we here perform no
approximations and numerically simulate the full dynamics of the time evolution as governed by equation (2).
We use a slowly varying pulse for the emitter g(e) () / g0 = min[1, e~ /2] with a weak maximal coupling

/K = 0.06. The optimal pulse for the receiver gs(P’) (t) is then determined by maximizing at every time step
the amplitude of the receiver |a, (¢)|. In figures 5(b)—(d), we show two examples of state transfers over a distance
of eight cavities along the edge of a crystal with N,, = 16 (N, = 11) unit cells along x (y). Specifically, in both
examples the emitter and the receiver are located on different edges of the crystal (see figure 5(a)), such that the
non-trivial transfer of excitations around a corner is included in the simulations. We compare two scenarios: the
first one with higher cavity quality factor Q¢ = 5.0 x 107 and strong OM coupling G = 2K with fop = 4K;
and the second with lower Q¢ = 107 and more detuned OM coupling G = 2K and 6oy = 20K. In the first
scenario, the edge state is more localized and has a slower group velocity (see figure 4), leading to a faster state-
transfer via a stronger v, / gs';“~0.03 (see equation (12)). However, the larger optical hybridization and longer
time spent in the waveguide make the optically-induced decay rate more detrimental, hence the need of higher
Qc. In the second scenario, the transfer is slower with 7 / gsr;ax ~ 0.006, but more resilient to dissipation.

In figure 6(a), we analyze the maximal fidelity F = |a, (t7) |2 as a function of the detuning oy for G = 2K
for Qc = {0.5, 1.0, 5.0} x 107.Ithighlights the larger optically-induced decay rate for smaller detunings. In
the short-time limit, one can approximate the opticallossas 1 — F ~ N, P, k¢ a /v, with N, the number of
traveled cavities. For larger detunings, the optical loss is reduced, but the smaller decay rates require longer time
trto transfer the state, which can become an issue compared to the coherence time of the TLS. As an example, for
K/2m = 100 MHz and gs';a" /K = 0.06,ty ~ 2usfor G = 2Kand éom = 4K. This s still fast compared to the

expected inhomogeneous dephasing times T5° ~ 10—100 ps and much shorter than the intrinsic coherence time
of T, ~ 10 ms demonstrated for SiV centers at low temperatures.

4.3.Disorder

So far, we have consider identical parameters over the entire system, i.e. perfectly matched mechanical
frequencies, detunings and OM couplings. In experiments, reaching a high level of homogeneity is challenging
and any realizations is expected to have a certain level of disorder. We here analyze the robustness of the state
transfer in presence of such imperfections within the system. To do so, we consider all parameters to be slightly
different for every cavities. For example, we consider local disorder such that ') = (1 + p)w where p;is
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Figure 6. State transfer fidelity. (a) State transfer fidelity F = |a, (t7)[? as a function of 6o for optical quality factors

Qc = 5.0 x 105 107, 5 x 107.Here, G = 2Kand Qy; = 10°. (b) Fidelity as a function of the disorder strength W for G = 2K,
Som = 4K (8om = 20K)and Qc = 5 x 107 (Qc = 107) plotted in solid line (dashed). The vertical lines represent the disorder
strengths for which Wwy, = e where ¢/K = 1.0 for 6op/K = 4 and €/K = 0.34 for op1/K = 20. In all figures, we have considered
wm/K = 460, wc/K = 2 x 10°%J/K = 200 and g™ /K = 0.06.

randomly chosen from a uniform distribution ranging from —W/2 to W/2. The same form oflocal disorder are
considered for A, G7, k) and Y}, where the upper script j refers to the jth OM cavity. In figure 6(b), we plot
the state transfer fidelity as a function of W averaged over 50 realizations of disorders. We compare the
robustness for G = 2Kand dop = 4K, where the gap is € = K, to the scenario with G = 2Kand 6oy = 20K,
where the gap is € ~ 0.34K. The state-transfer fidelity starts to decrease for disorder strengths large enough to
close the topological gap, which is roughly set by Ww,, 2 € (as indicated by the vertical lines in figure 6(b)). An
additional advantage of working with larger OM interactions is thus the increased resilience to disorder due to
the larger gap.

Note that in order to consider the same disorder strength W for all the relevant parameters in the dynamics,
we defined the disorder over the optical cavity frequencies in terms of the detuning A ~ Jinstead of the bare
frequency w, ~ 10*]. This means that the acceptable level of disorder W ~ 0.01 translates into relative
variations of the cavity frequencies w. of about 10~ percent. Reaching this level of precision is technically
challenging, but since this is a common goal for many photonic crystal applications, a lot of efforts are currently
focused on the development of photonic structures with significantly reduced levels of disorder. A promising
direction are post-fabrication fine-tuning techniques, such as demonstrated in [69, 70], by which the required
levels of accuracy can be reached.

5. Conclusion and outlook

In this work, we have proposed and analyzed a 2D hybrid system where the acoustic excitations within a Kagome
lattice of coupled OM cavities interact with spin degrees of freedom of point defects. In this context, we have
described the emergence of a topological phase where time-reversal symmetry is effectively broken for the
acoustic excitations as a result of the interplay between the OM interaction and the inter-cavity hopping. As a
potential application, we have shown that the resulting acoustic chiral edge states can serve as phononic
quantum channels, which are purely unidirectional and robust with respect to onsite-disorder. Our analysis
revealed how the key properties of such topological channels depend on the relevant OM coupling and detuning
parameters and how an optimized trade-off between optical losses, propagation speed and disorder protection
can be achieved. Apart from the considered example of SiV defects in diamond OM crystals, most of these
considerations will be relevant as well for other types of qubits or other artificial realizations of topological
systems.

Beyond quantum communication applications, the proposed hybrid system provides a versatile platform to
study interacting quantum many-body systems, where topological phases with broken time-reversal symmetry
are combined with strong nonlinearities provided by the spin qubits. The rich physics expected for such
interacting topological insulators is still little understood and could be probed in such setting in various
parameter regimes and employing only static spin-phonon interaction, which are in general much simpler to
engineer.
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Appendix A. Rotating wave approximation and OM instability

For completeness, we remind here the Hamiltonian for the 2D OM array considered in the main text, which is
givenby (i = 1)

Home = Y (wub; b — Aala; + Geialb; + Ge b, a) + S (Kb, by + Ja a; + h.c.). (A1)
i (i)
All the parameters are defined in the main text.
To derive Hamiltonian (A.1), we have neglected the effects of the OM off-resonant parametric type terms

3 Ge a;b; + hec. (A2)
j

Such terms describe the creation and annihilation of photon-phonon pairs and have been dropped during the
derivation of equation (1) based on a rotating wave approximation. The processes that dominantly contribute to
the corrections to the rotating wave approximation describe the creation (annihilation) of a phonon
accompanied by the creation (annihilation) of a photon in the flat Kagome band. The typical oscillation
frequency 6k of these terms in the rotating frame is set by the distance of the flat optical band from its blue side
band, dx ~ dom + 2wp. Asa consequence the leading order corrections to the RWA are of the order

~G/(6om + 2wy). Itisimportant to keep in mind that contrary to the usual case of time-reversal preserving
OM systems such terms can lead to an OM instability even in the regime where they represent a small
perturbation and when the driving is red detuned compared to all optical resonances, see [54] for a detailed
analysis. The reason for this behavior is that the same optical mode couples to different mechanical modes on its
blue and red sidebands. As a consequence the mechanical modes that couple only to the blue sideband of the flat
Kagome band but not to its red sideband are subject to a small overall optical induced amplification with rate
~kc G2/ 8%. This implies that a small mechanical decay rate of the order ) ~ k¢ G2/ (6k)? is required to
stabilize the system, which is present for all parameter regimes considered in this manuscript.

Appendix B. Negatively charged silicon-vacancy centers in diamond

In this section we describe in more detail the negatively-charged silicon-vacancy center in diamond. More

precisely, we focus on its electronic ground-state and its strain coupling to vibrational modes of its host crystal.
The molecular structure of the SiV center belongs to the D5 ; point group symmetry and their electronic

ground state are formed by an unpaired hole of spin S = 1/2 subjected to a strong spin—orbit interaction. The

resulting fourfold ground state subspace is comprised of two doublets, {|1) =~ |e_, |), |2) =~ |es, T)}and

{13) ~ les, 1), [4) ~ |e_, 1)}, which are separated by Agyy /27 =~ 46 GHz [59, 60]. Here, |e) are eigenstates of

the orbital quasi-angular momentum operator LAZAassociated to a2 /3 rotation about the symmetry axis of the

defect (taken to be along 2), i.e. Ry s3ler) = e’i%ﬂszleQ = e”Fi%lei}. In the presence of a magnetic field

B = B,@,, the Hamiltonian for a single SiV centeris (b = 1)

Hsiy = wpl2) (2] + AsivI3) (3] + (Asiv + wp) |4) (4]
+ %[9(t>ew+é<f)]<|2> (3 + 1) (4)) + hcl, (B.1)

where wp = 7, By and 7, is the spin gyromagnetic ratio. In equation (B.1), we have included a time-dependent
driving field of frequency w, with a tunable Rabi-frequency £2(¢) and phase ¢(f), which couples the lower and
upper states of opposite spin. This drive can be implemented locally on individual defects either directly with a
microwave field of frequency w; ~ Agjy [71], or indirectly via an equivalent optical Raman process [28].

B.1. Strain coupling to mechanical modes
Within an OM cavity, we consider a single mechanical mode associated with a displacement profile # (7). In
addition to modifying the indice of refraction seen by the optical mode, such deformation of the cavity modifies
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Figure B1. Silicon-vacancy center in diamond. (a) Energy structure of the SiV ground-state subspace where the two lowest-energy
states | 1) and |2) form along-lived spin qubit. A microwave drive (t) couples opposite spin states while the strain associated with a
single phonon couples the orbital degrees of freedom |e_ ) with strength g;. The combination of the two processes leads to a tunable
interaction between the spin states and phonons of frequency ~wj as shown in (c).

the electronic environment seen by the SiV center, resulting in the coupling of its orbital states |e.) [47, 48, 72].
The SiV-phonon coupling can be described by (7 = 1)

1nt g5]+b + h C., (BZ)

where [ = (J)F = [1) (3] + |2) (4]is the spin-conserving lowering operator and g, is the strain-induced

coupling rate which is proportional to the local strain tensor €% (7) = L [%uu )+ iub (?)]. The resulting

coupling rate can be writtenas g, = 27rd ¢ (Fiv), where d /27 ~ 1 PHz s the strain sensitivity [47, 48],

Xzpp ~ 1 fm is the mechanical zero point n;otlon [63], Aagy ~ 200 nm the characteristic phonon wavelength in
diamond and & (%;y) is the dimensionless strain distribution evaluated at the position of the SiV center 7;y.
From deformations i/ (¥') observed in previous experiments [50] and state-of-the-art positioning of SiV defects
[73], we expect £ (iv) ~ 1,leadingto interaction rates aslarge as g /2m ~ 30 MHz. This estimation is
consistent with finite-element simulations performed for 1D diamond nano-cavities [28]. For matching
frequencies (Agjy = wy) and mechanical quality factors Q ~ 10°, strong-coupling regime g, > wy/Q, 1/T5
should be reached, allowing coherent excitation transfer between the SiV center and the mechanical resonator.

B.2. Time-dependent effective spin-phonon coupling

In the specific case of a state transfer protocol, one has to control in time an effective coupling between the spin
degree of freedom, encoded in the two lowest-energy ground-states | 1) and | 2), and the mechanical mode. This
can be performed by an off-resonant driving of the state | 3) (see figure B1 and equation (B.1)), leading to a
standard three-level A atomic system. For large drive detunings 6 = wy — Agy,i.e.[6] > ||, lwm — wol, [
withwy = wy; + wpgthe frequency of the emitted phonons, the higher-energy state | 3) can be adiabatically
eliminated resulting in an effective time-dependent spin-phonon coupling

g (1) = g0(1) /6. (B.3)

Assuming 0 < (¢) /27 < 100 MHz and /27 < 400 MHz, this rate can be tuned between g, = Oanda
maximal value of gsr;ax / 27 ~ 7 MHz, which is still large enough to reach the strong coupling regime.

Appendix C. Diagonalization of the OM crystal Hamiltonian in the momentum space

In this appendix, we provide details of the diagonalisation in the quasi-momentum space of the OM
Hamiltonian (1) in the case of an infinite 2D array and a semi infinite stripe. Focusing on the Kagome lattice
architecture, the sum over all sites j of the crystal in equation (1) can be expanded into the sum over all unit cells
of the triangular lattice and the three basis cavities within each cells,i.e. j — {j, s} corresponding to the cavity
s = { A, B, C} in the unit cell centered at ﬁj = mjﬁl + 1 R. Doing so, Hopc reads

~ At oA
Home = Y (wubyjbej — Adfiag; + Ge'af bs,J + Ge—'% 8s) + Z(Kb“b,] +Ja};ds; + he).  (C1)

J»$ n.n.

Here, >_, ,, represents the sum over the nearest neighbors.
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