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Detection of topological phases by quasilocal operators
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It was proposed recently by some of the authors that the quantum phase transition of a topological insulator
like the Su-Schrieffer-Heeger (SSH) model may be detected by the eigenvalues and eigenvectors of the reduced
density matrix. Here we further extend the scheme of identifying the order parameters by considering the SSH
model with the addition of triplet superconductivity. This model has a rich phase diagram due to the competition
of the SSH “order” and the Kitaev “order,” which requires the introduction of four order parameters to describe
the various topological phases. We show how these order parameters can be expressed simply as averages of
projection operators on the ground state at certain points deep in each phase and how one can simply obtain the
phase boundaries. A scaling analysis in the vicinity of the transition lines is consistent with the quantum Ising
universality class.
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I. INTRODUCTION

In condensed-matter physics, the order parameter plays an
important role in the study of phase transitions. It charac-
terizes the order of a phase and helps to detect the critical
point. People usually rely on physical intuition or resort to
methods such as group theory and the renormalization group
analysis to identify the order parameters of a many-body
system. However, those methods require prior knowledge of
the symmetries of the Hamiltonian and do not always apply,
especially for systems exhibiting topological phase transi-
tions. A general and systematic scheme to derive the order
parameters without the aid of such empirical knowledge will
thus be highly constructive to the field.

Recently, a proposal based on using the dominant eigen-
states of the reduced density matrix of a many-body system
was established by some of the authors [1,2]. Unlike the
other schemes proposed [3–5], the approach is nonvariational.
Our scheme has also been extended to the detection of the
topological phase of topological insulators [6,7] such as the
Su-Schrieffer-Heeger (SSH) model [8] and, equivalently,
the Schockley model [9].

In our original proposal, one has to first determine the
minimum size of the reduced density matrix that captures the
extended correlations in the system by calculating the mutual
information. Then the dominant states (with relatively larger
eigenvalues) of the reduced density matrix are used to con-
struct the order parameter. For example, in the Mott insulator
phase of the fermion Hubbard model, the single-site reduced
density matrix has the largest eigenvalues for the local state
spin up and spin down. One can then define the order operator
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as a linear combination of the projectors of these two states,
which turns out to be the Pauli matrix in the z direction, as
expected [2]. However, in some cases such as the topological
phase of the SSH model, several eigenstates of the reduced
density matrix with comparable weights contribute and lead
to an undetermined combination in the order parameter [6].

In this work, we introduce a fundamental extension of our
previous proposal [6] to overcome the above-mentioned issue
by considering the projector of a subset of the system’s ground
state. The order parameter is then defined as the expectation
value of this projector in the original representation. We apply
the method to the SSH model with the addition of triplet pair-
ings between the fermionic states. The phase diagram of the
model consists of a trivial phase, two topological phases of the
Kitaev type, and one topological phase of the SSH type.
The four order parameters that describe the various phases
of the model are obtained. In comparison to the previously
adopted methods of calculating topological invariants or the
entanglement spectrum [10] to characterize a topological
phase, the order parameters obtained here provide additional
physical insight into the phases in real space. Unlike the topo-
logical invariants, our approach does not require the analysis
of the symmetry of the underlying lattice and order structure.
We also identify the phase transition points from the crossing
of the derived order parameters. The approach thus provides
an alternative way to obtain information on the topological
transitions.

This paper is organized as follows. In Sec. II we recap our
original scheme of deriving the order parameter and introduce
the fundamental extension of the method. We then apply the
method to obtain the order operators in the SSH model with
triplet pairing in Sec. III and calculate the order parameters
(ground-state average of the order operators) in Sec. IV. We
also study the universality class of the model from finite-size
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scaling analysis of the derived order parameters in Sec. V.
In Sec. VI, we mention that the application of the method
to the Kitaev model leads to a quasilocal operator that may
be identified with the local Hamiltonian. It is shown for
both the Kitaev model and the SSH-Kitaev model that the
local Hamiltonian may also be used to detect the topological
transitions. Finally, a conclusion is given in Sec. VII.

II. THE METHOD

The first step in our original proposal [1] to derive the order
parameter is to determine the minimum size of the block (or
subsystem) for which the mutual information does not vanish
at a long distance. The mutual information is defined as

S(i, j) = S(ρi ) + S(ρ j ) − S(ρi∪ j ), (1)

where S(ρi ) = −tr(ρi ln ρi ) is the von Neumann entropy of
block i. The reduced density matrix ρi is obtained by tracing
out all other degrees of freedom except those of block i, i.e.,
ρi = tr|"0⟩⟨"0|, where |"0⟩ is the ground state of the system.
If and only if the mutual information is nonvanishing at a long
distance does a long-range order (or quasi-long-range order)
exist in the system [11,12].

The next step is to calculate the eigenvalues and eigenstates
of the reduced density matrix of the desired block size. The
order operator is then defined as the linear combination of the
dominant eigenstates [1], i.e.,

Ôi =
∑

µ!ξ

wµa†
iµaiµ, (2)

where a†
iµ (aiµ) is the creation (annihilation) operator of state

µ at site i and ξ is the rank of ρi. It can be proved that for any
µ > ξ , the operator a†

iµaiµ does not correlate. The coefficients
wµ can be fixed by the traceless condition tr(ρiÔi ) = 0 and
the cutoff condition max({wµ}) = 1.

In some cases, the basis of the reduced density matrix
may not be ideal because of degeneracies, making it hard to
determine the coefficients ωµ in Eq. (2). In our previous work
[6] where the SSH model is considered, we demonstrated
that such a difficulty can be overcome by a transformation
into a Majorana basis. This allows a diagonal representation
of the Hamiltonian in terms of fermionic operators, which
are nonlocal combinations of the original fermion operators,
at some specific points in the phase diagram. The dominant
eigenstate of the reduced density matrix in this diagonal basis
is then simply a subset of the system’s ground state.

This suggests one may try a different approach and moti-
vates us to introduce a variation of our original scheme as used
in this work. Consider a Hamiltonian which can be expressed
in terms of some quasilocal Hamiltonian Hj that couples
sites with a finite separation in real space. The quasilocal
Hamiltonian is, in general, a function of a set of parameters,
i.e., Hj (g1, g2, . . . ). We may identify inside a phase in the
phase diagram a point (G1, G2, . . . ) where we can diagonalize
the Hamiltonian. Call |G1, G2, . . . ⟩ the ground state of Hj at
this point. Define an operator

Ô j = |G1, G2, . . . ⟩⟨G1, G2, . . . |, (3)

which is a projector to a subset of the system’s ground state.
We may now define the order parameter as the average value
of this operator in the ground state of Hj (g1, g2, . . . ).

Note that

Oj = ⟨g1, g2, · · · |Ô j |g1, g2, · · · ⟩

= |⟨g1, g2, · · · |G1, G2, · · · ⟩|2. (4)

Physically, this is like a measure of the overlap between
the ground state at two points in the phase diagram. How-
ever, unlike the conventional fidelity approach to quantum
phase transitions [13–15], the two points (g1, g2, . . . ) and
(G1, G2, . . . ) are, in general, far apart. See also, for instance,
[16,17]. In the next section, we illustrate the method in more
detail by applying it to the SSH model with triplet pairing
(SSH-Kitaev model).

III. ORDER OPERATORS OF THE SSH MODEL
WITH TRIPLET PAIRING

A. Model

This model may be viewed as a dimerized Kitaev super-
conductor [18]. The dimerization is parametrized by η, and
the superconductivity is parametrized by &.

This model is given by the Hamiltonian

H = −µ
∑

j

(c†
j,Ac j,A + c†

j,Bc j,B)

− t
∑

j

[(1 + η)c†
j,Bc j,A + (1 + η)c†

j,Ac j,B

+ (1 − η)c†
j+1,Ac j,B + (1 − η)c†

j,Bc j+1,A]

+&
∑

j

[(1 + η)c†
j,Bc†

j,A + (1 + η)c j,Ac j,B

+ (1 − η)c†
j+1,Ac†

j,B + (1 − η)c j,Bc j+1,A], (5)

where t is the hopping, & is the pairing amplitude, and µ is
the chemical potential. The anisotropies in the hopping term
and the pairing term are assumed to be the same since both of
them are associated with the spontaneous dimerization of the
lattice as a result of the coupling to the phonons. The model
with no superconductivity (& = 0) is related to the Schockley
model by taking t1 = t (1 + η) and t2 = t (1 − η). The region
of η > 0 corresponds to t1 > t2 and vice versa for η < 0. The
Hamiltonian in real space mixes nearest-neighbor sites and
also has local terms. We consider a system with j = 1, . . . , N
(N A sites and N B sites). The local terms can be grouped in
the matrix

Hj, j =

⎛

⎜⎜⎜⎝

−µ −t (1+η) 0 −&(1+η)
−t (1+η) −µ &(1+η) 0

0 &(1+η) µ t (1+η)
−&(1+η) 0 t (1+η) µ

⎞

⎟⎟⎟⎠
.

(6)
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The nonlocal terms of the nearest neighbors can be written as

Hj, j+1 =

⎛

⎜⎝

0 0 0 0
−t (1 − η) 0 −&(1 − η) 0

0 0 0 0
&(1 − η) 0 t (1 − η) 0

⎞

⎟⎠ (7)

and

Hj, j−1 =

⎛

⎜⎝

0 −t (1 − η) 0 &(1 − η)
0 0 0 0
0 −&(1 − η) 0 t (1 − η)
0 0 0 0

⎞

⎟⎠. (8)

The Hamiltonian matrices are the matrix elements in the basis
⎛

⎜⎜⎜⎜⎝

c j,A

c j,B

c†
j,A

c†
j,B

⎞

⎟⎟⎟⎟⎠
. (9)

In general, a fermion operator may be written in terms of
two Hermitian operators, γ1, γ2, in the following way:

c j,σ = 1
2 (γ j,σ,1 + iγ j,σ,2),

(10)
c†

j,σ = 1
2 (γ j,σ,1 − iγ j,σ,2).

The index σ represents internal degrees of freedom of the
fermionic operator, such as the spin and/or sublattice index,
and the γ operators are Hermitian and satisfy the Clifford
algebra

{γm, γn} = 2δnm. (11)

In terms of Majorana operators the Hamiltonian is written as

H = −µ

2

N∑

j=1

(2 + iγ j,A,1γ j,A,2+iγ j,B,1γ j,B,2)

− it
2

(1 + η)
N∑

j=1

(γ j,B,1γ j,A,2+γ j,A,1γ j,B,2)

− it
2

(1 − η)
N−1∑

j=1

(γ j+1,A,1γ j,B,2+γ j,B,1γ j+1,A,2)

+ i&
2

(1 + η)
N∑

j=1

(γ j,A,1γ j,B,2 + γ j,A,2γ j,B,1)

+ i&
2

(1 − η)
N−1∑

j=1

(γ j,B,1γ j+1,A,2+γ j,B,2γ j+1,A,1). (12)

Taking from now on µ = 0, we have four special points,
three corresponding to topological phases and one corre-
sponding to a trivial phase (Fig. 1): (i) Taking η = −1
and & = 0, we have a state similar to that in the SSH
and Schockley models with two fermioniclike zero-energy
edge states since the four operators γ1,A,1, γ1,A,2, γN,B,1, γN,B,2
are missing from the Hamiltonian. (ii) η = 0, t = &, and
(iii) η = 0, t = −& are Kitaev like states since there are two
Majorana operators missing from the Hamiltonian, such as
γ1,A,1 and γN,B,2, one from each end. (iv) An example of a
trivial phase is the point η = 1 and & = 0, in which case there

are no zero energy edge states. This model provides a testing
ground for the comparison of fermionic and Majorana edge
modes.

The order parameters (also called topological correlators in
Ref. [7]) can be determined separately for each phase.

B. The η = −1, " = 0 topological phase

At the point µ = 0, η = −1,& = 0 shown in Fig. 1, the
Hamiltonian reduces to

H = it
N−1∑

j=1

(γ j,B,2γ j+1,A,1 − γ j,B,1γ j+1,A,2). (13)

Let us define nonlocal fermionic operators [19]

d j = 1
2 (γ j,B,2 + iγ j+1,A,1),

(14)
d†

j = 1
2 (γ j,B,2 − iγ j+1,A,1),

and

f j = 1
2 (γ j,B,1 − iγ j+1,A,2),

(15)
f †

j = 1
2 (γ j,B,1 + iγ j+1,A,2).

We can show that

iγ j,B,2γ j+1,A,1 = 2d†
j d j − 1,

(16)
−iγ j,B,1γ j+1,A,2 = 2 f †

j f j − 1.

In terms of these new operators we can write that

H = t
N−1∑

j=1

(2d†
j d j − 1 + 2 f †

j f j − 1), (17)

and therefore the Hamiltonian is diagonalized. It is now clear
that the ground state is obtained by taking d†

j d j = 0 and
f †

j f j = 0 at each site. This new Hamiltonian in terms of the
d and f operators is like a Hamiltonian with no hopping and
just a chemical potential µ̃ = −2t .

The new operators can be related to the original ones in
terms of a nonlocal transformation as

d j = i
2

(c†
j,B − c j,B + c j+1,A + c†

j+1,A),
(18)

f j = 1
2

(c†
j,B + c j,B − c j+1,A + c†

j+1,A).

Also

c j,A = 1
2 [−i(−d†

j−1 + d j−1) − ( f j−1 − f †
j−1)],

c j,B = 1
2 [ f †

j + f j + i(d j + d†
j )]. (19)

Note that the index j of the d and f operators refers to the
bond connecting the j, B and j + 1, A sites in the original
representation. At the special point we are considering, we
may also write

H = −2t
∑

j

(c†
j+1,Ac j,B + c†

j,Bc j+1,A). (20)
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FIG. 1. (a) Phases of the SSH-Kitaev model for zero chemical potential. When & = 0, the model reduces to the SSH model, and for
negative η the model is topologically nontrivial, with edge states represented by the decoupled Majorana operators. As in the Schockley
model, since at each end site there are two decoupled Majoranas, they combine to form edge fermionic modes. This constitutes phase SSH2
with η = −1, & = 0, and two edge modes. If superconductivity is present and there is no dimerization, η = 0, the model reduces to the Kitaev
model. Phase K1 with η = 0, & = t has two decoupled Majorana operators, one at each end, and therefore there is one Majorana mode at
each edge. The model interpolates between Majorana modes and fermionic modes as the parameters change. There is also a trivial phase with
no zero-energy modes denoted SSH0 which is similar to the trivial phase of the Schockley model. The Hamiltonian in terms of Majoranas
simplifies at the four points marked with yellow squares, and (b) shows an illustration of the Majorana modes at these four points. At each
of the lattice sites j, the two dots represent the Majorana operators γ j,σ,1 and γ j,σ,2 (σ = A or B). The lines represent the links between the
Majorana operators.

In the diagonalized basis, the ground state is a product state of
|00⟩. Using Eq. (3), the order operator is

ÔSSH
− = |00⟩⟨00|

= I − |10⟩⟨10| − |01⟩⟨01| − |11⟩⟨11|
= 1 − f †

j f j (1 − d†
j d j ) − d†

j d j (1 − f †
j f j ) − f †

j f jd
†
j d j

= (1 − f †
j f j )(1 − d†

j d j ). (21)

Note that the same expression can also be obtained using
Eq. (2) by considering the reduced density matrix in the di-
agonalized basis, which is solely contributed by the eigenstate
|00⟩ [6]. The above expressions are local in space. We may
now use the relation between the d and f operators and the
original operators in Eq. (18). This is a nonlocal transforma-
tion since it couples site j with the nearest-neighbor site j + 1.
The operator may now be obtained as

ÔSSH
− = 1

2 (c†
j+1,Ac j,B + c†

j,Bc j+1,A) − n j,Bn j+1,A

+ 1
2 (n j,B + n j+1,A). (22)

C. The η = 0," = t topological phase

Consider now the special point of the SSH-Kitaev model
given by η = 0,& = t . This point is deep inside the Kitaev-
like phase, as shown in Fig. 1. At this point the Hamiltonian
simplifies to

H = t
∑

j

(iγ j,A,2γ j,B,1 + iγ j,B,2γ j+1,A,1). (23)

Write

iγ j,B,2γ j+1,A,1 = 2d†
j d j − 1,

(24)
iγ j,A,2γ j,B,1 = 2g†

jg j − 1.

Here the operator d j is defined in Eq. (14), and the operator g j
is given by

g j = 1
2 (γ j,B,1 − iγ j,A,2). (25)

Therefore

g j = 1
2 (c†

j,B + c j,B − c j,A + c†
j,A). (26)

The ground state is obtained by taking nd, j = 0 and ng, j = 0.
Therefore let us define the new operator in the basis of these
occupation numbers as

ÔSK
+ = |00⟩⟨00|

= 1 − d†
j d j − g†

jg j + d†
j d jg

†
jg j . (27)

Using their expressions in terms of the original operators, one
obtains

ÔSK
+ = 1

4 [c†
j,B(c j,A + c j+1,A) + (c†

j,A + c†
j+1,A)c j,B

+ c j,B(c j,A − c j+1,A) + (c†
j,A − c†

j+1,A)c†
j,B]

− 1
4 (2n j,B − 1)(c†

j+1,Ac j,A + c†
j,Ac j+1,A

+ c j+1,Ac j,A + c†
j,Ac†

j+1,A) + 1
4 . (28)

D. The η = 0, " = −t topological phase

Taking η = 0,& = −t , the Hamiltonian reduces to

H = −it
∑

j

(γ j,A,1γ j,B,2 + γ j,B,1γ j+1,A,2). (29)

Define two new operators

f j = 1
2 (γ j,B,1 − iγ j+1,A,2), (30)

h j = 1
2 (γ j,A,1 − iγ j,B,2). (31)
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In terms of the original fermion operators,

f j = 1
2 [c j,B + c†

j,B − (c j+1,A − c†
j+1,A)],

(32)
h j = 1

2 [c j,A + c†
j,A − (c j,B − c†

j,B)].

The Hamiltonian at this point can be written as

H = t
∑

j

(2h†
j h j − 1 + 2 f †

j f j − 1). (33)

Again, the ground state is obtained by taking the state of no
occupation of number operators of the f and h operators. So
let us define a new operator valid for negative & as

ÔSK
− = |00⟩⟨00|

= 1 − f †
j f j − h†

j h j + f †
j f jh

†
j h j (34)

= 1
4 [c†

j,B(c j,A + c j+1,A) + (c†
j,A + c†

j+1,A)c j,B

+ c j,B(−c j,A + c j+1,A) + (−c†
j,A + c†

j+1,A)c†
j,B]

− 1
4 (2n j,B − 1)(c†

j+1,Ac j,A + c†
j,Ac j+1,A

− c j+1,Ac j,A − c†
j,Ac†

j+1,A) + 1
4 . (35)

E. The η = 1, " = 0 trivial phase

For η > 0, the mutual information is exponentially van-
ishing, and the correlation is not captured by considering the
single-site block with A and B atoms. However, one could
take the block consisting of a B atom at site j and an A
atom at site j + 1. The mutual information obtained would
be the mirror image of that in Fig. 4 of Ref. [6] along η = 0.
The eigenspectrum of the reduced density matrix in this case
is shown in Fig. 5(b) of the same reference. Carrying out a
similar analysis as above, the order parameter takes the form
of Eq. (22), but with the indices { j + 1, A} and { j, B} being
replaced by { j, B} and { j, A}, respectively. We have

ÔSSH
+ = 1

2 (c†
j,Bc j,A + c†

j,Ac j,B) − n j,An j,B + 1
2 (n j,A + n j,B).

(36)

IV. PHASE DIAGRAM AND ORDER PARAMETERS

A. Calculation method

We may now calculate the order parameters (or topological
correlators) as the ground-state average values of the operators
ÔSSH

+ , ÔSSH
− , ÔSK

+ , ÔSK
− defined in the previous section.

The average values may be obtained, for instance, using
exact diagonalization, using the density matrix renormal-
ization group [20–22] (particularly useful if one introduces
interactions between the original fermions), or via the solution
of the Bogoliubov–de Gennes (BdG) equations in the absence
of interactions. This last method allows the solution for large
systems (suitable for the finite-size scaling analysis carried
out below). We consider open boundary conditions in the
following. The results obtained using exact diagonalization
and the BdG method agree.

We may write that

c j,A =
∑

n

(
un

j,Aγn + vn
j,Aγ †

n

)
,

(37)
c j,B =

∑

n

(
un

j,Bγn + vn
j,Bγ †

n

)
,

where γn are the fermionic operators that diagonalize the
Hamiltonian. The Bogoliubov–de Gennes equations are writ-
ten in real space as

∑

j′
Hj, j′

⎛

⎜⎝

u j′,A
u j′,B
v j′,A
v j′,B

⎞

⎟⎠ = ϵn

⎛

⎜⎝

u j,A
u j,B
v j,A
v j,B

⎞

⎟⎠, (38)

where ϵn are the energy eigenvalues, uA,B and vA,B are the
components of the eigenfunctions, and j′ is restricted to j =
j′ and j = j′ ± 1.

The averages of the order parameters may then be obtained
by solving the BdG equations and determining the wave
functions. Considering a finite system of size N , the problem
requires the diagonalization of a (4N ) × (4N ) matrix.

B. Results

We may now consider cuts in the phase diagram and cal-
culate the order parameters. With open boundary conditions it
is better to take the average over alternating lattice sites [7].
Specifically,

O = 2
N

∑

j=2i+1

Oj . (39)

In the top panel of Fig. 2 we consider three cuts for η =
−0.5, η = 0, η = 0.5, and in the bottom panel we consider
cuts for & = −0.5,& = 0,& = 0.5. We calculate the average
order parameter, and the results shown are for a large system
size of N = 100. The results for the two types of cuts are quite
symmetrical if we change η to & and vice versa, also chang-
ing the order parameters appropriately. The order parameters
clearly identify various phases in the model, and we observe
the following:

(i) At the points where each order parameter is defined the
order parameter is normalized to 1 since it is the ground-state
average value of the projector to that state.

(ii) At each phase the order parameter characteristic of that
phase has the largest value.

(iii) The order parameters cross at the transition lines.

V. SCALING AND CRITICAL EXPONENTS

We may now determine the scaling properties of the order
parameters. The scaling allows us to determine the critical
exponents and the universality class of the system.

We recall that the order parameters defined above do not
vanish at the transition points as usual. Also the order param-
eter does not separate a disordered phase with a vanishing
order parameter from an ordered phase with finite values
of the order parameter. The various averages of the order
operators that represent the various topological phases cross
at the driving parameter g = gc(N ) with finite values Oc(N ).
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FIG. 2. Top: Order parameters as a function of & for constant values of η = −0.5, 0, 0.5. Bottom: Order parameters as a function of η for
constant values of & = −0.5, 0, 0.5. We consider open boundary conditions and a system size N = 100. The numbers in purple next to where
the order parameters cross correspond to the cuts through the phase boundaries labeled in Fig. 1(a).

The scaling is then expected to have the form

Nβ/ν (O − Oc) = f (N1/ν (g − gc)). (40)

Here β is the usual critical exponent associated with an
order parameter, and ν is the exponent associated with the
correlation length. The function f is the scaling function. In
comparison to the standard scaling relation that describes a
continuous phase transition [23], O is replaced by O − Oc
to make the equation consistent in the thermodynamic limit.
Plotting the left-hand side of the above scaling relation against
the argument of the scaling function, we expect that the
curves for different system sizes should collapse into a single
curve near the critical point. Note that the scaling function
is independent of the system size at the crossing point g = gc,
and the size dependence of each order parameter is such that in
the thermodynamic limit the order parameter should converge
to a value Oc ̸= 0 in our problem.

Consider first a single-band Kitaev model. The model is not
expected to have some form of quasi-long-range order. The
correlation functions decay exponentially with a correlation
length that indeed diverges at the topological transition with
an exponent ν = 1. This may be obtained using the scaling
behavior of the energy gap Eg ∼ (g − gc)νz, where z is the
dynamical critical exponent. Since the energy spectrum is
linear, we have z = 1, and the gap scales linearly, which leads
to ν = 1 (as shown, for instance, in [24]). Generalizing the
Kitaev model to a multiband model with an antisymmetric
coupling between the two bands leads to a rich phase diagram
that displays a topological transition between a Weyl-like
phase and a conventional superconductor that turns out to
be in a different universality class of the Kitaev model [25].
The dispersion relation near the transition points turns out to
be quadratic, leading to a dynamical critical exponent z = 2,

and since the gap as a function of the driving parameter (the
chemical potential) vanishes linearly, this leads to ν = 1/2
[also using the hyperscaling relation 2 − α = ν(d + z), where
d is the spatial dimension, leads to α = 3/2, while in the
Kitaev universality class α = 0].

Consider now the SSH model with no superconductivity. In
Ref. [7] a mapping was established in some regime between
the Schwinger model on a lattice and the SSH model. Using
the order parameter OSSH

− , it was shown that the model is
in the universality class of the d = 2 classical Ising model
or the quantum Ising model in a transverse field (recall that
a mapping exists between a quantum model in d dimensions
and a classical model in d + z dimensions; therefore if z = 1,
there is a mapping from a quantum one-dimensional model
and a classical two-dimensional model). Note that the two-
dimensional Ising model displays a true phase transition and it
makes sense to define an order parameter. In this class the crit-
ical exponents are given by ν = 1,β = 1/8. The results are
consistent with previous treatments of the massive Schwinger
model [26–28].

A. Scaling in the Ising universality class

Let us now consider the SSH model with triplet pairing and
consider open boundary conditions (ignoring the small dis-
continuity at the transition points observed for small system
sizes yields similar results in the case of periodic boundary
conditions). In order to consider the scaling we must choose
the critical exponents and perform the analysis with different
system sizes.

Consider some cuts in the phase diagram as indicated by
the purple dashed segments in Fig. 1(a). In Fig. 3, we show
results for the scaling of the order parameters for some of the
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FIG. 3. Scaling of various order parameters for cuts 1, 2, 5, and 6 with ν = 1, β = 1/8. The black, red, green, and blue curves correspond
to OSK

+ , OSK
− , OSSH

+ , and OSSH
− , respectively. Here we use open boundary conditions (OBCs), and order parameters are averaged over all odd

sites (or even sites) as defined in Eq. (39). We consider system sizes N = 24, 28, 32, 36, 40.

various cuts considered. Here we use the Ising universality
class with ν = 1 and β = 1/8, as obtained before for the SSH
model. The scaling seems to work approximately well for
the various cases since the curves near the transition points
collapse basically into a single curve.

B. Optimizing the scaling

While the choice of critical exponents above describes well
the scaling of the various order parameters near the various
transition lines, we may find a pair of critical exponents
that best fit the scaling ansatz in Eq. (40). A criterion may
be used such that the deviations between the various curves
for different system sizes in the vicinity of the critical point
are minimized. One may also minimize the squares of these
deviations. The logarithm of this deviation D is shown in
Fig. 4 for the scaling of the order parameter OSK

+ across the
transition associated with cut 1. Specifically, for each value of
the driving parameter around the critical point (in this case η),
the squared differences between the minimum and maximum
values of the order parameter for the various system sizes
(taken here as N = 24, 40, 60, 100, 200) are considered. The
result shown in Fig. 4 is the logarithm of the sum of this
differences squared at each η value. The results obtained sug-
gest that the universality class may be different from the Ising
class. We may also fit a polynomial function to the results for
the various system sizes and use the least-squares method for
a given scaling function. This leads to similar results. Similar
results are also found for the other cuts considered in Fig. 1(a)
and for the various order parameters and therefore are not
shown here.

As we can see, the deviation is minimized if we keep
increasing ν and decreasing β. So a value of ν = 1 is a large
value, and β = 1/8 is small, but the agreement becomes better
(but slowly varying) if we change along the lines mentioned.
Note that β = 0 and a very large ν lead to a scaling of the type

O − Oc = f ((g − gc)) (41)

with no system size dependence at all. Clearly, in the infinite
system limit this holds.

The exponent ν = 1 has also been obtained by other
methods. In one-dimensional systems of the Dirac type of
class AIII it has been shown [29] that, in general, γ = ν.
Considering the case of the SSH model it was explicitly
shown [29] that ν = 1. Our results for cut 5 (with & = 0
and changing η as in the SSH model) as for the other cuts

FIG. 4. Minimization of spreading of scaled curves of OSK
+

around the critical point of cut 1.

115113-7



YU, SACRAMENTO, LI, ANGELAKIS, AND LIN PHYSICAL REVIEW B 99, 115113 (2019)

are not inconsistent with the analytical behavior for the SSH
model since the optimization shows a very slow change of the
least-squares deviation.

VI. LOCAL HAMILTONIAN AS THE “ORDER
PARAMETER”

A. Single-band Kitaev model

Consider the single-band Kitaev model at a zero chemical
potential described by the Hamiltonian

H = −t
∑

j

(c†
j+1c j + c†

j c j+1) + &
∑

j

(c jc j+1 + c†
j+1c†

j ).

(42)

The Hamiltonian takes a simple form at points & = t and
& = −t , as discussed above for the generalization of the
model to two sublattices. A similar procedure allows us to
determine two operators associated with the diagonalization
of the Hamiltonian at these two points. The order parameters
are simply given by the average of the projectors to a single-
site zero occupation of the d j operators defined in Eq. (14)
(and the f operators defined in Eq. (15) for the case of & =
−t). We obtain then that

ÔK
j,+ = |0⟩⟨0| = 1 − d†

j d j

= 1
2 − 1

2 Hj (t = & = 1) (43)

and

ÔK
j,− = 1

2 − 1
2 Hj (t = −& = 1), (44)

where Hj is the contribution from site j to the Hamiltonians

Hj (t = & = 1) = −c†
j+1c j − c†

j c j+1 + c jc j+1 + c†
j+1c†

j

(45)

and

Hj (t = −& = 1) = −c†
j+1c j − c†

j c j+1 − c jc j+1 − c†
j+1c†

j ,

(46)

respectively. Diagonalizing the full Hamiltonian at an arbi-
trary point in the phase diagram, we may write

ÔK
j,+ = 1

2
+

∑

n

vn
j

(
un

j+1 + vn
j+1

)
,

(47)
ÔK

j,− = 1
2

+
∑

n

vn
j

(
− un

j+1 + vn
j+1

)
.

In Fig. 5 we calculate the order parameters as a function
of & and take the average over odd sites as in the previous
section. The order parameters cross at the transition point.
Since these operators are basically the local Hamiltonian plus
a constant, this suggests that the local Hamiltonian itself may
be used as an order parameter. While in the case of the single-
band Kitaev model the procedure to determine the projectors
leads to the local Hamiltonian at that specific point in the
phase diagram, this does not occur in the SSH-Kitaev model,
as shown in Sec. III.

In any case, let us consider the local Hamiltonian of the
SSH-Kitaev model to see if it can be used as a suitable
operator that leads to an order parameter.

FIG. 5. Order parameters for the single-band Kitaev model as a
function of & for N = 32.

B. SSH-Kitaev model

Write the Hamiltonian in Eq. (5) as H =
∑

j Hj , and
then define four operators as the local Hamiltonian Hj at
the points indicated in Fig. 1(a). We calculate their aver-
ages at an arbitrary point of the phase diagram using the
eigenstates of the Hamiltonian at this arbitrary point. Note
that, in general, these states are not the eigenstates of the
Hamiltonians at the special points marked in Fig. 1(a). As
an example let us consider that we fix & = 0.5 and change
η from −1 to 1. The results for other ranges of values lead
to similar conclusions. In Fig. 6 we show the results for this
cut in the phase diagram for the four local Hamiltonians. The
results are strikingly similar to the ones obtained using the
order parameters OSK

+ , OSK
− , OSSH

+ , OSSH
− , and the transitions

are clearly signaled by the crossings of the various order
parameters defined from the local Hamiltonians.

We may as well identify the phase transitions considering
only one of the order parameters, and actually, we do not
have to limit their definition to the special points where a
diagonalization of the Hamiltonian can be performed analyti-
cally (as is easily done using the Majorana representation). Let
us consider the local Hamiltonian Hj in an arbitrary point in
the phase diagram of the SSH-Kitaev model (this should hold

FIG. 6. Local Hamiltonian order parameters for the SSH-Kitaev
model as a function of η at & = 0.5, using OBCs and taking
N = 32.
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FIG. 7. Local Hamiltonian order parameters for the SSH-Kitaev
model and its derivatives with respect to η as a function of η at
& = 0.5, using OBC and taking N = 100. In the left panel, the local
Hamiltonian at the point η = 0.9 and & = −0.1 is considered. In
the right panel we take the local Hamiltonian at & = 0.5 and at the
sequence of values of η along the cut. Therefore in the right panel it
is the energy per site.

for an arbitrary Hamiltonian). Let us now consider a cut in the
phase diagram that crosses some transition or transition lines
(points). We will show now that the derivative of the average
of this local Hamiltonian in the basis of the eigenstates of the
full Hamiltonian at each point along the cut with respect to the
parameter that defines the cut detects the transition lines. We
will focus on a specific example, but the result can be checked
for arbitrary examples.

Consider, for example, the same cut as above, where & =
0.5 and we change η from −1 to 1. There are two transition
points at η = −0.5 and η = 0.5. Consider the local Hamilto-
nian at the point η = 0.9,& = −0.1, some arbitrary point in
the phase diagram and not on the cut that we choose. We also
calculate the average energy per site. The results are shown
in Fig. 7. While the transitions are detected by calculating
the second derivative of the energy per site with respect to
the driving parameter η (this is like a susceptibility or related
to the fidelity susceptibility), it is enough to calculate the
first derivative of the average of the local Hamiltonian at an
arbitrary point in the phase diagram not necessarily located in
a point on the cut.

VII. CONCLUSIONS

With the method introduced, we obtained the order param-
eters that clearly signal the various phase transitions in the
SSH model with triplet pairing. Also the magnitudes of the
various order parameters are in complete agreement with
the sequence of phases in the sense that the larger order para
meter corresponds to the dominant characteristic of each
phase.

The finite-size scaling analysis results with exponents ν =
1 and β = 1/8 seem to support the model belonging to
the quantum Ising universality class. This is consistent with
previous results obtained for the SSH model. However, the
least-squares optimization analysis also showed that ν and
β can be values larger than 1 and 1/8, respectively. This
suggests some nontrivial scaling relations may be required to
describe the quantum criticality in the model since we have
competing order parameters. One possibility is related to the
existence of more than one order parameter, as discussed, for
instance, in Ref. [30]. Another possibility is the existence of
more than one correlation length, as discussed in Ref. [31].

We expect the method we proposed here can also be
applied to other symmetry-protected topological systems, in
which the topological order is expected to be short range and
a deformation to a quasilocal Hamiltonian is possible as long
as the gap does not close in the procedure, for example, the
multiband hybridized superconductors [25,32], which have a
diagonal representation of the Hamiltonian at specific points
of the phase diagram. For future works, it will be interesting
to examine how the method can be extended to Hamiltonians
with long-range terms or a true topological ordered system
with long-range entanglement. In the latter case, we believe
that our method will also work with a suitable modification
and the order parameter, instead of being limited to a few
neighbors, may extend farther throughout the system.
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