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Abstract. We introduce a scheme for generating entanglement between two

quantum dots using a plasmonic waveguide made from an array of metal

nanoparticles. We show that the scheme is robust to loss, enabling it to work

over long distance plasmonic nanoparticle arrays, as well as in the presence of

other imperfections such as the detuning of the energy levels of the quantum

dots. The scheme represents an alternative strategy to the previously introduced

dissipative driven schemes for generating entanglement in plasmonic systems.

Here, the entanglement is generated by using dipole-induced interference effects

and detection-based postselection. Thus, contrary to the widely held view that
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loss is major problem for quantum plasmonic systems, we provide a robust-to-

loss entanglement generation scheme that could be used as a versatile building

block for quantum state engineering and control at the nanoscale.
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1. Introduction

Quantum plasmonics is a rapidly emerging field that offers new opportunities for investigating

quantum optics at the nanoscale [1–4]. Here, novel capabilities in the way the electromagnetic

field can be localized [5] and manipulated [6] open up the prospect of miniaturization,

scalability and strong coherent coupling with single-emitter systems [7], beyond the limits of

conventional photonic systems [8]. In particular, with the advancement of nanofabrication and

characterization technologies, metal nanoparticles have been attracting considerable attention as

they allow a flexible approach to reaching a high confinement of optical fields [9–12], and it has

recently been suggested to use them for building compact on-chip quantum plasmonic networks

operating at the nanoscale [13–15]. However, Ohmic loss in the metals that support plasmonic

excitations is a major obstacle for realizing plasmonic quantum information processing and

quantum control [16]. This energy dissipation process induces decoherence in the system

and limits the performance of a given task. For example, it has been shown that the optimal

distance for quantum state transfer in an array of nanoparticles is severely limited [13]. In

order to overcome the problem of loss in plasmonic systems researchers have begun to consider
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employing various types of gain media [17] or metamaterials [18], while trying to keep the high

field confinement characteristic offered by plasmonic systems. A different approach has been

to tailor the system dynamics such that the steady state of the system yields useful states, the

so-called driven-dissipative approach [19–21]. Despite this important progress in techniques to

overcome loss in plasmonic systems, implementing quantum information processing based on

an array of metal nanoparticles remains elusive.

In this paper, as a first step towards building quantum plasmonic networks based on metal

nanoparticles, we propose an alternative and practical scheme for generating entanglement,

between two distant quantum dots (QDs), using the plasmonic modes of a metal nanoparticle

array. We show that one can achieve entangled QD states with high fidelities even in the

presence of large losses from the metal nanoparticles and inhomogeneous broadenings of the

QDs. Robustness against metal loss of the entanglement (or equivalently against an increase

in the length of the nanoparticle array) alleviates the length limit of the array, opening

up its use for compact nanoscale quantum networks including quantum teleportation [22],

quantum communication [23] and quantum repeaters [24]. The plasmonic scenario also provides

opportunities in the construction of quantum plasmonic devices on scales far below the

diffraction limit, a more compact approach than traditional optical cavities or ion trap networks.

The robustness of the entanglement against detunings of the QDs allows the scheme to

work even when the QDs have different resonant frequencies, where the operating frequency

to be detected is far off-resonant with the QD transitions. This is an important practical

consideration. It ultimately stems from the fact that only classical sources of light are required

to generate the entanglement between two distant QDs. The scheme we introduce is based

on a quantum interference phenomena introduced by Waks and Vu

ˇ

ckovi

´

c [25] called dipole-

induced transparency (DIT). We utilize this interference effect to construct our entangled states

and analyse in detail the impact of dissipation and detection efficiency on its stability. While

previous studies have investigated entanglement of QDs using DIT [25], our analysis of loss

in this study goes well beyond that of previous works and allows us to realistically apply DIT

to a quantum plasmonic scenario. This provides a more compact setting for the generation of

entanglement compared to other approaches, such as photonic crystal cavities, which are an

order of magnitude larger in size.

2. Physical system

The physical system for the entanglement generation scheme consists of an array of spherical

nanoparticles embedded in a dielectric material, with two distant QDs and four tapered metal

nanowires, as depicted in a top-down view in figure 1(a). All metallic regions have a frequency-

dependent permittivity ✏
m

(!), and the background dielectric region has a static real and positive

permittivity ✏
d

. The tapered metal nanowires are connected to adjacent metal nanoparticles

and serve as input/output ports. The nanoparticle structure can be decomposed into two arms,

each consisting of a linear array of nanoparticles, as considered in [13], which meet in the

centre at a special arrangement of four nanoparticles that serves as a plasmonic beam splitter,

as discussed in [14]. Each arm of nanoparticles supports electron-charge density oscillations

in the longitudinal and transverse directions with respect to the array orientation. For the

orientation of the source nanotips shown in figure 1(a), due to the direction in which the

electron charge density oscillates in the nanowires, the nanowire field couples predominantly

to the longitudinal oscillation in the nanoparticle. For coupling to the transverse polarization,

New Journal of Physics 15 (2013) 083017 (http://www.njp.org/)
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Figure 1. (a) Setup for robust-to-loss entanglement generation using an array

of metallic nanoparticles. The nanoparticle structure can be decomposed into

two arms, each consisting of a linear array of nanoparticles, and a special

arrangement of nanoparticles in the centre that serves as a plasmonic beam

splitter. Two tapered metal nanowire waveguides on the left and right-hand side

(source 1 and 2) focus light to the ends of their tips and excite localized surface

plasmons on the adjacent nanoparticles. These excitations propagate across the

arms and are then mixed at the nanoparticle beam splitter, after which they

exit via the other two tapered metal nanowire waveguides (drain 1 and 2). By

initializing the QDs to be in a superposition of ground and excited states, and

injecting coherent states of light into both the source nanowires, the system

can be tailored so that a detection event at drain 1 signals the generation of

entanglement between the QDs. For the detection, an off-chip photon detector

is linked to the output signal of drain 1, or alternatively this can be replaced

with an on-chip detection unit [30] to directly measure the excitation at the

(n + 1)th nanoparticle (as shown in panel (c)). A detection event at drain 2 (or

alternatively on-chip detection linking to the (n + 2)th nanoparticle) can also

lead to entanglement generation between the QDs. All metallic regions have a

frequency-dependent permittivity ✏
m

(!), and background dielectric regions have

static real and positive permittivity ✏
d

, as defined in the text. (b) Energy level

diagram for the QDs. Each QD (i = 1, 2) has three states |gii, |mii and |eii and

has a |gi–|ei (|mi–|ei) transition with frequency �
g (m)
i , which is detuned by

�
g (m)
i from the natural frequency of the adjacent nanoparticle, !

0

.
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we rotate each source nanotip clockwise or counterclockwise by 90

�
. Each polarization direction

is maintained through the beam splitter whose corners are bent by 90

�
due to near field nature

of the coupling with negligible radiation losses into the far field, provided that only nearest-

neighbour interactions are considered [15, 26, 27]. Thus, a longitudinal (transverse) mode

from the sources will become a transverse (longitudinal) mode at the drains, and subsequently

the drain nanotips should be properly oriented to collect charge-density oscillations in the

corresponding direction as shown in figure 1(a). Alternatively, the out-of-plane transverse mode

(perpendicular to the plane) can be used even if the corners at the nanoparticle beam splitter

or the junction between the beam splitter and the two arms have arbitrary bending angles.

The coupling strength between the nanoparticles depends on their separation distance and the

direction of the electron-charge density oscillations [12, 28]. Each QD is coupled to the first

metal nanoparticle of its respective array (as shown in figure 1(a)), and assumed to have three

internal energy states: a ground state, a long-lived metastable state and an excited state, which

we refer to as |gi, |mi and |ei, respectively, as shown in figure 1(b). The states |gi and |mi
represent the qubit states of the QD. The transition between |gi and |ei is assumed to be

optically coupled to the adjacent nanoparticle, while the optical transitions connected to |mi
are decoupled due to spectral detuning. The desired level structure can be realized in a variety

of solid-state material systems [29].

2.1. Basic operation of the entanglement generation scheme

If we take a single arm, say the left-hand side of figure 1(a), then depending on the state of

the QD, both the transmission and reflection coefficients of the metal nanoparticle array exhibit

different characteristics. When the QD is in the state |mi, i.e. when it is decoupled from the

adjacent nanoparticle due to the large detuning (see appendix A.1), the characteristics of the

transmission and reflection coefficients of the source nanowire reveal a similar behaviour to

those of a single array of nanoparticles (see [13]), where the plasmonic field is transmitted

across the array when it is on-resonance with one of the eigenmodes. On the other hand, when

the QD is in the state |gi, i.e. when it is coupled to the adjacent nanoparticle, the propagating

plasmons cannot pass through the adjacent nanoparticle and are completely reflected back into

the source nanowire due to a phenomenon called dipole induced reflection (DIR), which is

an alternative form of DIT [25]. Here, DIR occurs when the operating frequency ! of the

plasmons is resonant with the |gi–|ei transition frequency (as shown in appendix A.1). The

entanglement generation scheme then works as follows. Consider that light in the form of

plasmon excitations are injected into the system via both of the source nanowires at the same

time and that the QDs are prepared in a superposition,

1p
2

(|gi
1

+ |mi
1

) ⌦ 1p
2

(|gi
2

+ |mi
2

). If a

plasmon is detected coming out from drain 1 for given input states at the sources, for example

coherent states, then the plasmon came from the cases where either one of QDs is in |mi, or both

are in |mi. A destructive interference of the case |mi
1

⌦ |mi
2

can be induced by controlling

the phases of the initial coherent states, so that only states |mi
1

⌦ |gi
2

and |gi
1

⌦ |mi
2

lead

to the detection event and consequently a superposed state of |gi
1

⌦ |mi
2

and |mi
1

⌦ |gi
2

is

generated after the detection, i.e. | �i = 1p
2

(|mi
1

⌦ |gi
2

� |gi
1

⌦ |mi
2

), which is an entangled

state of the QDs. Likewise, the detection of a plasmon coming from drain 2 can be also used for

generating the entangled state | �i. This requires different phases of the initial states compared

to the case of the detection at drain 1, similar to the case of a bulk beam splitter which has

the transformation |↵i|�i ! |(↵ +�)/
p

2i|(↵��)/
p

2i so the output port is controlled by the

New Journal of Physics 15 (2013) 083017 (http://www.njp.org/)
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input phases. Here, we focus on the case of the detection at drain 1. This is the basic concept for

generating entanglement between two QDs using the plasmonic modes of a metal nanoparticle

array in the ideal case when there is no loss. Here, we have made use of the characteristics of

the transmission and reflection coefficients depending on the internal state of the QDs and an

appropriate detection event.

2.2. System Hamiltonian

Before describing the entanglement generation scheme in more detail and showing its

robustness to loss from the nanoparticles, we first briefly introduce the model to describe the

system in figure 1(a). We begin with the Hamiltonian for the nanoparticle system which is

given by

Ĥ
np

=
2n+2X

i=1

h̄!i â
†

i âi +

X

[i, j]

h̄gi, j

⇣
â†

i â j + â†

j âi

⌘
, (1)

where !i is the natural frequency of the field oscillation at the i th nanoparticle, gi, j is the

coupling strength between the fields of the i th and j th nanoparticles, and [i, j] denotes a

summation over adjacent neighbours j for a given nanoparticle i . The natural frequency !i

satisfies the Fr

¨

ohlich criterion Re [✏
m

(!i)] = �2✏
d

[12, 31], which considers the nanoparticles to

be small enough compared to the operating wavelength such that only dipole-active excitations

are important [32]. The dielectric function of the metal ✏
m

(!) is given by a Drude–Sommerfeld

model, which gives rise to a best fit to experimental data at frequencies corresponding to

free space wavelengths �
0

& 350 (530) nm for silver (gold) [33]. For simplicity we take all

nanoparticles to have the same permittivity ✏
m

and radius R, thus the local frequencies are set to

be equal, !i = !
0

, for i = 1, . . . , 2n + 2. The operators â†

i (âi ) represent creation (annihilation)

operators associated with a dipole-field excitation at the i th nanoparticle, which obey bosonic

commutation relations [âi , â†

j ] = �i j . Here, a macroscopic quantization of the fields is used,

where the field modes are defined as localized solutions to Maxwell’s equations satisfying the

boundary conditions of the metal–dielectric interface [34]. In this case, the electron response in

the metal is contained within the dielectric function of the metal, ✏
m

(!) [13, 35, 36].

The interaction term in equation (1) involves two approximations for the centre-to-centre

distance, d, between nanoparticles: a point-dipole approximation (3R 6 d), where multipolar

interactions are negligible [37], and a near-field approximation, (d ⌧ �), where � is the

wavelength of the nanoparticle dipole field [10, 14], where the nearest-neighbour interaction is

dominant via the F

¨

oster fields with a d�3

distance dependence [38]. These two approximations

for d are covered simultaneously by a weak-coupling approximation, where the couplings

between nanoparticles, gi, j , are much less than the natural frequency, !
0

, [12, 14], i.e. |gi, j | ⌧
!

0

for which we set max|gi, j | = 0.1!
0

throughout the work.

The Hamiltonians for the QDs are then given by

Ĥ g (m)
QD

1

= 1

2

h̄�g (m)
1

�̂
g (m)
z,1 + h̄ J g (m)

1

⇣
â

1

�̂
g (m)†
1

+ â†

1

�̂
g (m)
1

⌘
,

Ĥ g (m)
QD

2

= 1

2

h̄�g (m)
2

�̂
g (m)
z,2 + h̄ J g (m)

2

⇣
â

2n+2

�̂
g (m)†
2

+ â†

2n+2

�̂
g (m)
2

⌘
,
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where �
g (m)
1

is the transition frequency between |gi and |ei (|mi and |ei) of QD

1

on

the left-hand side, �̂
g (m)
1

= |gihe| (|mihe|), �̂ g (m)†
1

= |eihg| (|eihm|) and �̂
g (m)
z,1 = |eihe| �

|gihg| (|eihe| � |mihm|). The vacuum Rabi frequency of QD

1

when coupled to the first

nanoparticle dependent on the individual directions of the pairwise dipole moments of |gi–|ei
and |mi–|ei transitions of the QD, J g (m)

1

, is obtained within the rotating-wave approximation

and the dipolar approximation, where the distance between the nanoparticle and QD

1

is assumed

to be larger than the radius of the nanoparticle [34, 39]. Similar denotations and considerations

as given above are used for QD

2

on the right-hand side.

2.3. Equations of motion for the system

With the Hamiltonians introduced, the total system including the nanoparticle baths (for

modelling loss) and the nanowires (sources and drains) can then be described in terms of

Heisenberg equations of motion by using input–output formalism [13, 40, 41]. The Heisenberg

equations for the left-hand side of the system (from first to (n + 1)th nanoparticle and QD

1

) are

given by

dâ
1

dt
= �

✓
i!

0

+

g
s

1

2

+

0
1

2

◆
â

1

� ig
1,2â

2

+

p
g

s

1

ŝ
in,1 +

p
0

1

b̂
in,1 � iJ g (m)

1

�̂
g (m)
1

, (2)

dâ j

dt
= �

✓
i!

0

+

0 j

2

◆
â j � ig j, j�1

â j�1

� ig j, j+1

â j+1

+

p
0 j b̂in, j ( j = 2, 3, . . . , n � 1), (3)

dân

dt
= �

✓
i!

0

+

0n

2

◆
ân � ign,n�1

ân�1

� ign,n+1

ân+1

� ign,n+3

ân+3

+

p
0nb̂

in,n, (4)

dân+1

dt
= �

✓
i!

0

+

g
d

1

2

+

0n+1

2

◆
ân+1

� ign,n+1

ân � ign+1,n+2

ân+2

+

p
g

d

1

d̂
in,1 +

p
0n+1

b̂
in,n+1

, (5)

d�̂
g (m)
1

dt
= �

 

i�
g (m)
1

+

�
g (m)

1

2

!

�̂
g (m)
1

+ iJ g (m)
1

â
1

�̂
g (m)
z,1 + f̂ g (m)

1

. (6)

Similar Heisenberg equations can be written for the right-hand side of the system (from (n + 2)th

to (2n + 2)th nanoparticle and QD

2

). The couplings between the nanowires and their adjacent

nanoparticles are represented by g
s

1

, g
s

2

, g
d

1

and g
d

2

. They are also assumed to obey the

weak-coupling approximation, |g
s

1

|, |g
s

2

|, |g
d

1

| and |g
d

2

|⌧ !
0

, as for the interparticle coupling

strengths gi, j . This is imposed in our model for the nanowires, as the field profiles at the

nanowire tips are similar in form to those of the nanoparticles, so that the model is a consistent

description [13]. The damping rate 0 for each metal nanoparticle depends on its size, and

is given by Matthiessen’s rule [12]: 0 = v
F

/�
B

+ v
F

/R, where �
B

is the bulk mean-free path

of an electron, v
F

is the velocity at the Fermi surface and R is the radius. By considering

all the nanoparticles to have the same size and permittivity enables us to set 0i = 0
0

for

i = 1, . . . , 2n + 2. The decay rate � g (m)
of a QD from |ei to |gi (|ei to |mi) is given by the

standard Wigner–Weisskopf spontaneous emission rate of the dipole, where it is assumed that

the nanoparticle does not modify it. The operators ŝ
in,1(2), d̂

in,1(2), and b̂
in,i represent the input

fields of the source nanowires, the drain nanowires and the i th nanoparticle’s bath mode,

respectively. The output fields of the nanowires, ŝ
out,1(2) and d̂

out,1(2), and the nanoparticles’
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baths, b̂
out,i , are related to the input fields by â

1(2n+2) = 1pg
s

1

(s
2

)
(ŝ

in,1(2) + ŝ
out,1(2)), ân+1(n+2) =

1pg
d

1

(d
2

)
(d̂

in,1(2) + d̂
out,1(2)) and âi = 1p

0
0

(b̂
in,i + b̂

out,i), for i = 1, . . . , 2n + 2, respectively. Metal

losses in the nanowires are not included in the above Heisenberg equations, but will be included

and discussed later. The damping rates of the QDs are assumed to be relatively small compared

to all other rates, so that the noise operators, f̂ g (m)
i (i = 1, 2), can be neglected in that they do

not significantly affect the quantum coherence of the system.

2.4. Scattering matrix for the system

The entanglement generation scheme works in the weak excitation regime, where the dipole

is assumed to be predominantly in the initial state |gi or |mi (the validity of this regime is

discussed in appendix B, where we consider the pulse profiles of the inputs). In this limit, �̂ g (m)
z

can be replaced by its mean value, h�̂ g (m)
z i ⇡ �1, so that the coupled Heisenberg equations of

motion give rise to four scattering matrices, one for each of the four internal states of the QDs

(|mmi, |gmi, |mgi and |ggi), with the general form

ŝ†

in,1(!) = t
s

1

s

1

(!)ŝ†

out,1(!) + t
s

1

s

2

(!)ŝ†

out,2(!) + t
s

1

d

1

(!)d̂†

out,1(!) + t
s

1

d

2

(!)d̂†

out,2(!) + f̂ †

out,s
1

(!),

(7)

ŝ†

in,2(!) = t
s

2

s

1

(!)ŝ†

out,1(!) + t
s

2

s

2

(!)ŝ†

out,2(!) + t
s

2

d

1

(!)d̂†

out,1(!) + t
s

2

d

2

(!)d̂†

out,2(!) + f̂ †

out,s
2

(!),

where the noise operators for the nanoparticles are f̂ †

out,s
1

(!) = P
2n+2

i t
s

1

bi(!)b̂†

out,i(!) and

f̂ †

out,s
2

(!) = P
2n+2

i t
s

2

bi(!)b̂†

out,i(!). The coefficient t⇤⌃ denotes the transition amplitude from an

input mode ‘⇤’ to an output mode ‘⌃’. According to the state of the QDs (|ggi, |gmi, |mgi and

|mmi), the transition amplitude from ‘⇤’ to ‘⌃’ when the states of the two QDs are in |xi ⌦ |yi,
for x, y 2 {m, g} is represented by the coefficient t xy

⇤⌃. For the sake of generality we have defined

a dipole operator �̂m
1(2) for the dipole state |mi, with the |mi–|ei transition frequency �m

1(2) and

damping rate � m
1(2). However, in what follows we will treat the system when QD

1(2) is in state |mi
as if there is no QD

1(2), i.e. J m
1(2) = 0, since it is effectively decoupled from the nanoparticle in

this case. For simplicity, we choose all the couplings between nanoparticles in the two arms

to be equal, g j,k = g
np

(at a fixed distance d , array orientation and nanoparticle size [12]),

and the nanowire to nanoparticle couplings, g
s

1

= g
s

2

= g
d

1

= g
s

2

= g
in

–

out

. The weak-coupling

approximations for these coupling strengths are equivalent to |g
np

| ⌧ !
0

and |g
in

–

out

| ⌧ !
0

.

We impose these by setting max|g
np

| = 0.1!
0

and max|g
in

–

out

| = 0.1!
0

, which are achieved by

varying the distance between the nanoparticles, and between the nanowire tips and their adjacent

nanoparticles, respectively, for given polarizations of electron-charge density oscillations [13].

In this work we will mainly focus on the case of 1! = !�!
0

= 0, which is approximately

the same as the case of using an optical pulse with a small enough bandwidth around !
0

such that all coefficients in equation (7) are slowly varying. The transitions from the ground

(metastable) states to the excited states for the QDs are detuned by �
g (m)
1

and �
g (m)
2

from the

resonant frequency !
0

of the nanoparticles, as shown in figure 1(b).

From equation (7), the relation of the operators for the plasmons at resonance, ! = !
0

, can

be written as a reduced matrix for each of the four internal states of the QDs to give

 
ŝ†

in,1(!0

)

ŝ†

in,2(!0

)

!

=
 

t
s

1

d

1

(!
0

) t
s

1

d

2

(!
0

)

t
s

2

d

1

(!
0

) t
s

2

d

2

(!
0

)

! 
d̂†

out,1(!0

)

d̂†

out,2(!0

)

!

, (8)
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where |t
s

1(2)d1

(!
0

)|2 + |t
s

1(2)d2

(!
0

)|2 6 1 as the fields are reduced due to the losses from the metal

nanoparticles and the QDs, as well as transmissions (or back reflections) to the source nanowire

modes ŝ†

out,1(2). The equality holds only if there is no dissipation and back reflections. A 50/50

beam splitter of lossy nanoparticles is achieved by setting gn,n+3

= gn+1,n+2

= g
h

= (g
in

–

out

+

0
0

)/2 and gn,n+1

= gn+2,n+3

= g
v

= p
2g

h

, while taking care of the polarization-dependence of

the couplings between nanoparticles, such that t
s

1

d

2

(!
0

) = it
s

1

d

1

(!
0

) and t
s

2

d

1

(!
0

) = it
s

2

d

2

(!
0

) in

equation (8) regardless of the internal states of the QDs. Here we assume no cross couplings

between nanoparticles at the sites n and (n + 2) or (n + 1) and (n + 3) or (n � 1) and (n + 1)
as they are relatively small compared to g

v

and g
h

with a d�3

distance dependence [38]. The

coupling values for the 50/50 beam splitter set the transition amplitudes t
s

1

s

2

(!
0

) = t
s

2

s

1

(!
0

) = 0

in equation (7), which implies that any plasmonic field coming from the left-hand (right-hand)

side source nanowire is not influenced by the state of the QD on the right-hand (left-hand) side,

i.e. we have t xy
s

1

⌃= t xy0
s

1

⌃ and t xy
s

2

⌃= t x 0 y
s

2

⌃. Note that the configuration of four nanoparticles we use

here provides the correct symmetric splitting operation [14].

The role of the 50/50 beam splitter in our scheme is to erase the ‘which-way’ information

of the two pathways associated with the QD internal states |gmi and |mgi. Hence, the amount

of energy that leaks into other output modes at the beam splitter is not important as long as

we can perfectly erase the which-way information by having the same transition probabilities

for the two pathways. Such a lossy beam splitter of nanoparticles is based on the lossless beam

splitter proposed by Yurke and Kuang [14]. For the case 1! 6= 0, the above choice of coupling

values for g
h

and g
v

does not guarantee that the nanoparticle configuration performs as a 50/50

beam splitter, i.e. it leads to a failure in the ability of the beam splitter to erase the which-

way information. This introduces decoherence into the generated entangled state. In figure 2,

concentrating on the left arm and the beam splitter of nanoparticles, we plot the transmission

and reflection spectral profiles for plasmons injected into the left source nanowire, |t
s

1

s

1

|2, |t
s

1

s

2

|2,

|t
s

1

d

1

|2 and |t
s

1

d

2

|2 as 1!/g
np

is varied, with g
in

–

out

/g
np

= 0.5, 0
0

/g
np

= 0.1, J g
1

/g
np

= 0.3 and

�
g

1

/g
np

= 0.001 chosen as an example, when QD

1

is in |mi or |gi. Here, we focus on the

case of n = 2 (the minimum number of nanoparticles in our scheme) and 3 in the left arm

as the representative of even or odd number of nanoparticles because the dependence of the

transmission and reflection amplitude on the in–out coupling strength g
in

–

out

is different for even

and odd due to the resonances of the array (as shown in appendix A.2). For the case of QD

1

in

state |mi (figures 2(a) and (b)), on resonance (1! = 0), the left arm of nanoparticles follows the

characteristics of a single array of nanoparticles and just transfers the plasmon field through the

array to the beam splitter where it is split equally. The reason for the large backscattering (|t
s

1

s

1

|2
probability) in the case of n = 2 (figure 2(a)) is due to the eigenmodes of the array (from the

source to each drain) not being on resonance for 1! = 0, whereas for n = 3 (figure 2(b)) there

is a resonant eigenmode at 1! = 0 for each drain [13]. For 1! 6= 0 the various eigenmodes

of the system come into resonance at particular frequencies of the input field and cause the

oscillatory behaviour seen on either side of 1! = 0. On the other hand, for the case of QD

1

in state |gi (figures 2(c) and (d)), the first nanoparticle is coupled to QD

1

and DIR occurs (as

shown in appendix A), regardless of the resonant eigenmodes in the nanoparticle system. Thus

in both figures 2(c) and (d) at 1! = 0 the backscattered probability |t
s

1

s

1

|2 goes to unity. Away

from 1! = 0 the transition probabilities follow the same behaviour as for the case of QD

1

in

state |mi, as the QD becomes off resonant and so cannot induce any dipole-based interference

effect.
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Figure 2. Transmission and reflection spectral profiles for plasmons that are

injected into the left source nanowire. Left (right) column shows the case of

n = 2 (3), and the upper (lower) row represents the case when QD

1

is in |mi(|gi).
Regardless of the number of nanoparticles or the state of QD

1

, at resonance

(1! = 0) the beam splitter splits the transmitted light field into two halves and

blocks any field from reaching the right-hand side arm, so that |t
s

1

d

1

|2 = |t
s

1

d

2

|2
and |t

s

1

s

2

|2 = 0. In (a) and (b), when QD

1

is in |mi, each coefficient exhibits the

characteristics of a basic metal nanoparticle array, where n = 2 has |t
s

1

s

1

|2 6= 0

while n = 3 has |t
s

1

s

1

|2 ⇡ 0 (see main text for details). In (c) and (d), when QD

1

is in |gi, DIR causes |t
s

1

s

1

|2 ⇡ 1 for both n = 2 and 3 when 1! = 0.

3. Entanglement generation scheme

In this section, we first consider a weak input classical source to delineate the basic idea of how

the scheme works and then describe a more general scenario.

3.1. Weak field injection

To generate entanglement between the QDs, both are initialized to be in an equal superposition

of qubit states |gi and |mi, i.e. |+i = 1p
2

(|gi + |mi). This can be achieved by first driving the

QDs into the lowest-energy state and then rotating them by either a direct ⇡/2 transition, or

a Raman transition [42], depending on the specifics of the QD internal energy level structure.

After initializing the QDs, a coherent field |↵i with frequency !
0

is injected into the left source,

ŝ†

in,1, and simultaneously another coherent field |�i with same polarization and frequency as |↵i
is injected into the right source, ŝ†

in,2. The initial state of the whole system is then

|9
i

i = 1

2

(|gi
1

+ |mi
1

)(|gi
2

+ |mi
2

)|↵i
s

1

|�i
s

2

|0i
d

1

|0i
d

2

.

The input plasmon fields interact with the QDs only if they are in the state |gi. In the case that

one (or both) of the QDs is in the state |mi, a field is transferred along one (or both) of the
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arms, then mixed at the beam splitter and goes out through one of the drain nanowires, d̂†

out,1(2).

Entanglement can be generated by the detection of an excitation in drain 1, which could have

come from either the left or right arm, when the QDs were in |mgi and |gmi respectively (the

case when both arms supply an excitation, with the QDs in |mmi, is suppressed as described

below). Thus, the nanowire mode d̂†

out,1 is connected to a detector in order to postselect the

successful case when the which-way information has been erased and the QDs have been

entangled as a consequence. Alternatively, an on-chip detector could be directly coupled to

the (n + 1)th nanoparticle so that the drain nanowire is not needed. Note that the total plasmonic

system only requires a classical source of light in order to generate entanglement.

To see how the scheme works, it is useful to consider sufficiently weak coherent states

(↵ ⌧ 1, � ⌧ 1) when there is no loss present. We may expand |9
i

i to first order in the

plasmonic excitation number and approximately drop all other output modes. Then, as the

scheme is based on the detection of an excitation we can drop the vacuum terms so that

|9
i

i ⇡ 1

2

(|gi
1

+ |mi
1

)(|gi
2

+ |mi
2

)(↵|1i
s

1

+�|1i
s

2

). Perfect DIR leads to t gg
s

1

d

1

= t gm
s

1

d

1

= 0 and

t gg
s

2

d

1

= tmg
s

2

d

1

= 0, and using equation (7) for each of the internal states of the QDs, together with

a postselection of the state when an excitation is present in drain 1, we have the unnormalized

state of the QDs as

|9i
QDs

= 1

2

�
(↵tmm

s

1

d

1

+�tmm
s

2

d

1

)|mmi +�t gm
s

2

d

1

|gmi +↵tmg
s

1

d

1

|mgi . (9)

Here, the beam splitter enables tmm
s

1

d

1

= tmg
s

1

d

1

and tmm
s

2

d

1

= t gm
s

2

d

1

, i.e. the plasmon injected in each

source is not influenced by the QD in the opposite arm. If the phase of the amplitude � is

chosen such that ↵tmm
s

1

d

1

+�tmm
s

2

d

1

= 0, we have a normalized ideal entangled state as |9i
QDs

=
1p
2

(|mgi � |gmi) ⌘ | �i with probability |↵tmg
s

1

d

1

|2. This is the basic idea of the scheme for the

limiting case of weak ↵ and �.

3.2. Arbitrary field injection and loss

We now turn to the more general scenario, starting with the initial state |9
i

i without any

restrictions on ↵ and �. In this case the detection of excitations at drain 1 is modelled by

the projection operator P
d

1

= P1
n=1

|ni
d

1

hn| = I� |0i
d

1

h0| that projects the state of the system

onto a subspace containing at least one excitation in mode d̂†

out,1. This projection models the

measurement performed by an ideal non-photon number resolving detector, which registers a

detection event as long as there is at least one excitation at the detector. Later we will also

investigate the effects of detection inefficiency in the scheme. As a result of lifting the restriction

on the input field amplitudes and the accuracy of the detection, the state of the QDs becomes

mixed and can be written as

⇢
QDs

= Tr(all fields)[P
d

1

|9
f

ih9
f

|P
d

1

]

Tr(QDs)[Tr(all fields)[P
d

1

|9
f

ih9
f

|P
d

1

]]

. (10)

The final state of the output fields, |9
f

i, is found by transforming |9
i

i according to the four sets

of scattering matrices from equation (7) depending on the state of the QDs. It is written as

|9
f

i = 1

2

(|ggi| ggi
fields

+ |mmi| mmi
fields

+ |gmi| gmi
fields

+ |mgi| mgi
fields

) , (11)

where the state of the fields at the output modes is represented by a product of coherent states

| xyi
fields

= |⇠ xy
1

i
s

1

|⇠ xy
2

i
s

2

|µxy
1

i
d

1

|µxy
2

i
d

2

⌦2n+2

j=1

|� xy
j i

bj (12)
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with amplitudes ⇠
xy
j = ↵t xy

s

1

s j
+�t xy

s

2

s j
( j = 1, 2) at the source nanowires, µ

xy
j = ↵t xy

s

1

d j
+�t xy

s

2

d j

( j = 1, 2) at the drain nanowires, and �
xy
j = ↵t xy

s

1

b j
+�t xy

s

2

b j
( j = 1, . . . , 2n + 2) for the

nanoparticle bath modes. Each coherent field consists of an interference of two pathways, one

from source 1 and the other from source 2 with respective transition amplitudes. Throughout this

work, we impose the matching condition ↵tmm
s

1

d

1

+�tmm
s

2

d

1

= 0 in order to exclude the possibility of

the case of |mmi leading to a detection, i.e. the amplitude for the coherent state in drain 1 is

µmm
1

= 0. As mentioned previously, this can be achieved by properly adjusting the amplitude �
of the coherent field injected into source 2. In order to measure how well the QDs are entangled,

we employ the fidelity as a figure of merit, defined as the overlap between the desired final

state, | �i, and the actual final state of the system, ⇢
QDs

, and given by F = h �| ⇢
QDs

| �i.
The fidelity allows us to quantify how close the final state is to the desired state, and at the same

time provides a lower bound on the concurrence, C , a typical entanglement measure for two

qubits, i.e. C >max(0, 2F � 1). Such a lower bound implies that entanglement is always found

when the fidelity is greater than 1/2 [43, 44]. The fidelity is given as F = h �|⇢
QDs

| �i =
1

2

(⇢
22

+ ⇢
33

� ⇢
23

� ⇢
32

), where ⇢pq is the entry in the pth row and the qth column of the matrix

for ⇢
QDs

that is spanned by the basis {|ggi, |gmi, |mgi, |mmi}. The entries are given by

⇢
22

= 1

4⌘

⇣
1 � hµgm

1

|0i
d

1

h0|µgm
1

i
d

1

⌘
, ⇢

33

= 1

4⌘

⇣
1 � hµmg

1

|0i
d

1

h0|µmg
1

i
d

1

⌘
, (13)

⇢
23

= 1

4⌘

⇣
hµgm

1

|µmg
1

i
d

1

� hµgm
1

|0i
d

1

h0|µmg
1

i
d

1

⌘

⇥hµgm
2

|µmg
2

i
d

2

h⇠ gm
1

|⇠mg
1

i
s

1

h⇠ gm
2

|⇠mg
2

i
s

2

⌦2n+2

j=1

h� gm
j |�mg

j i
bj = ⇢⇤

32

.

The efficiency (or success probability for generating an entangled state) is the probability to

detect photons at drain 1 and is given by the denominator of equation (10) as

⌘ = Tr(QDs)[Tr(all fields)[P
d

1

|9
f

ih9
f

|P
d

1

]]

= 1 � 1

4

⇥|h0|µgg
1

i|2 + |h0|µmm
1

i|2 + |h0|µgm
1

i|2 + |h0|µmg
1

i|2⇤ . (14)

Thus, by inspecting equation (13), a high fidelity is obtained in the limiting scenario where

we have µ
gm
1

= �µ
mg
1

with all the other field modes for the case when the QDs are in |gmi
approximately equal to the field modes for the case when the QDs are in |mgi, so that they

are effectively factored out in equation (11). In this case, the state of the total system becomes

|9
f

i = (µ
gm
1

|gmi + µ
mg
1

|mgi) ⌦ |all fieldsi. However, this limiting scenario is hard to achieve

for arbitrary fields injected into the system as higher-order photon number contributions act

as a decoherence mechanism on the final state. The impact of higher-order photon number

contributions on the value of the fidelity and efficiency are shown figure 3. Here, a trade-off

between fidelity and efficiency can be seen as ↵ is increased (note: � = i↵ by the matching

condition ↵tmm
s

1

d

1

+�tmm
s

2

d

1

= 0) [45]. The fidelity decays quickly with increasing ↵ due to the

presence of higher-order excitations in the plasmonic system. It asymptotically approaches 0.5
in the limit ↵ � 1, indicating that the higher-order excitation contributions have completely

decohered the state of the QDs. On the other hand, the fidelity reaches close to one when ↵ ⌧ 1,

which indicates that an ideal entangled state is generated in the limit of the weak field injection

case, as described in the previous subsection. Note that higher-order excitations are inevitable

but not a practical problem as the amplitude ↵ is easily controllable, so that we can decrease the

magnitude of ↵ as low as required (or increased) for a reasonable fidelity and efficiency.
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Figure 3. Fidelity of the state of the QDs, ⇢
QDs

, with respect to the maximally

entangled state | �i at resonance 1! = 0 for the coherent fields injected into

the sources. Here, the magnitude of the field of the injected states, ↵ (with

� = i↵), is varied for n = 2 and 3. As an example, we have used the system

parameters g
in

–

out

/g
np

= 0.5, J g
1

/g
np

= J g
2

/g
np

= 0.3, �
g

1

/g
np

= �
g

2

/g
np

= 0.001

and 0
0

/g
np

= 0.1. When ↵ is increased, the fidelities drop and asymptotically

approach 0.5, whereas the efficiencies go up and asymptotically approach 0.5.

The gradients of the fidelities and efficiencies can be changed depending on the

system parameters we have set. These affect the performance of the scheme, as

shown in figure 4, where we vary g
in

–

out

/g
np

and 0
0

/g
np

.

4. Results

Having described the entanglement generation scheme and general trends for the fidelity and

efficiency we now go into the details of the robustness of the fidelity to loss from the metal

nanoparticles, the length of the arms, and inhomogeneous broadenings of the QDs. We also

examine the efficiency of generating entanglement in these circumstances. We will show the

main results in this section, and explain more detailed mathematics in the appendices. Our

analysis of entanglement generation is classified into two groups, each according to the number

of nanoparticles in the arms: even or odd. This is because the dependence of the transmission

amplitude on the in–out coupling strength g
in

–

out

is different for even and odd due to the

resonances of the array (as shown in appendix A.2). We have also chosen to plot all parameters

in units of the nanoparticle coupling g
np

so that the plots are independent of g
np

, as long as

g
np

⌧ !
0

is satisfied (weak-coupling approximation). Note also that max(g
in

–

out

/gmax

np

)=1 must

be imposed, where gmax

np

= 0.1!
0

, otherwise we move away from the weak-coupling regime

for the sources and drains. In other words, the rescaled couplings g
in

–

out

/g
np

can in principle go

higher than 1, but the value for g
np

must be lower than 0.1!
0

to compensate, so that we are still in

the weak-coupling regime. All calculations are done for resonant input fields,1! = !�!
0

= 0

(the case of pulsed input fields is investigated in appendix B). We also set the QD–nanoparticle

couplings as J g
1

/g
np

= J g
2

/g
np

= 0.3, and the QD decay rates �
g

1

/g
np

= �
g

2

/g
np

= 0.001. Other

parameters of the system are varied in our analysis.

4.1. Robust fidelity against metal loss

We first examine the fidelity and efficiency of our scheme with respect to loss in the metal

nanoparticles. For this purpose, we choose the cases of n = 2 and 3 as representatives of even

and odd numbers of nanoparticles in each arm. Figure 4 shows the fidelity and efficiency as

the nanoparticle loss 0
0

/g
np

increases and the in–out coupling strength g
in

–

out

/g
np

is varied

New Journal of Physics 15 (2013) 083017 (http://www.njp.org/)

http://www.njp.org/


14

Figure 4. Fidelity of generated QD state, ⇢
QDs

, with respect to the maximally

entangled state | �i when the input fields are on resonance (1! = 0) as the

in–out coupling strength g
in

–

out

/g
np

and the amount of metal loss 0
0

/g
np

are

varied, for n = 2 and 3. Left (right) hand column shows the case of n = 2 (3),
and the upper (lower) row shows the fidelity (efficiency).

for ↵ = 0.5 (with � = i↵). Here, we have assumed that the |gi–|ei transition of each QD is

resonant with its adjacent nanoparticle such that �
g
1(2) = 0, while �m

1(2) is chosen for the QD

|mi–|ei transition to be completely decoupled from the dynamics.

In figures 4(a) and (b), we show that the fidelity varies only slightly with increasing

0
0

/g
np

, implying a remarkable robustness against metal loss. Such a robustness in fidelity can

be understood from the observation that the reflection coefficient of each arm predominantly

determines the fidelity for the case of resonant QDs (�
g
1

= �
g
2

= 0), as we explain in detail in

appendix C. This indicates that the fidelity mostly depends on the behaviour of the reflection

coefficient of each arm with metal loss 0
0

/g
np

and g
in

–

out

/g
np

; the reflection coefficient varies

only slightly with 0
0

/g
np

since the energy never enters the array, and has a monotonic trend

with g
in

–

out

/g
np

(see appendix A), resulting in robustness of the fidelity against metal loss and

a general decrease in the fidelity with respect to g
in

–

out

/g
np

, respectively. Contrary to the case

of the fidelity, we show that the efficiency of generating entanglement is decreased with 0
0

/g
np

in figures 4(c) and (d). This is because the efficiency is determined by how much energy is

transferred from the sources to the drains, indicating that the efficiency is mostly related to the

transmission coefficient of each arm. In contrast to the reflection, the transmission coefficient

is more sensitive to metal loss, and has different dependence on g
in

–

out

/g
np

(as shown in more

detail in appendix A).
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Figure 5. Fidelity of generated QD state, ⇢
QDs

, with respect to the maximally

entangled state | �i when the input fields are on resonance (1! = 0) as the

in–out coupling strength g
in

–

out

/g
np

is varied and the number of nanoparticles

n is increased for a set amount of metal loss, 0
0

/g
np

= 0.1. Left (right) column

presents the case of even (odd) n, and the upper (lower) row presents the fidelity

and efficiency respectively.

In this subsection, we chose ↵ = 0.5 as an example. However, if we choose a larger value

of ↵ then higher-order excitations will reduce the fidelity and increase the efficiency on average

in figure 4, as already shown in the previous subsection. Note that this is not a practical problem

as the amplitude ↵ is easily controllable, so that it can be decreased as low as required (or

increased) for a reasonable fidelity and efficiency. Thus, using coherent states as initial states is

a key merit of the scheme, which allows us to use a metal nanoparticle array supporting lossy

plasmonic modes.

4.2. Robust fidelity against the length of a nanoparticle array

In terms of the total amount of loss present in the entire system, the effect of increasing the

loss of each nanoparticle, for a fixed number of nanoparticles, can be regarded as equivalent to

increasing the number of nanoparticles in each arm for a fixed amount of loss. In figure 5,

for a fixed amount of metal loss, 0
0

/g
np

= 0.1, and input amplitude ↵ = 0.5, the fidelity

and efficiency are shown as g
in

–

out

/g
np

is varied with increasing number of nanoparticles. As

expected, the behaviour of the fidelity and the efficiency as the length of nanoparticle array is

increased is very similar to the behaviour seen in figure 4. It is quite remarkable that one can

achieve a robust high fidelity (and thus entanglement) over a reasonably long array of metal
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nanoparticles, even though it has so far been believed that loss limits the length of an array of

nanoparticles for quantum information processing purposes.

Furthermore, we have checked that the number of nanoparticles can be increased arbitrarily

with the fidelity staying consistently above 0.8 at the maximum efficiency optimized over

g
in

–

out

/g
np

for ↵ = 0.5 but that at the same time this maximum efficiency asymptotically

approaches zero as the loss becomes much more dominant in the overall dynamics. Therefore

the overall performance is limited by the repetition rate of the pulses used for entangling.

Meanwhile, g
np

can be arbitrarily changed as long as the value of g
in

–

out

/g
np

is kept within the

necessary limits, but if the distance between nanoparticles increases too much (g
np

decreases),

then their coupling becomes so weak that the radiative damping rate becomes important [12].

According to a typical example of a nanoparticle array [12], where nanoparticles with radius of

25 nm are separated by a centre-to-centre distance 75 nm and our approximations are satisfied,

the size of the total array is about n ⇥ 150 nm (for example, if n = 40, the total size is about

6 µm).

4.3. Robust fidelity against detunings of the QDs

A major challenge when using solid-state emitters is inhomogeneous broadening, typically

caused by emitter size variation and strain fields in the host material. This means that two

emitters usually have non-identical emission wavelengths and thus the two QDs in our scheme

cannot be easily assumed to have the same resonant transition frequencies in a realistic scenario.

Here, as one of the merits of the scheme, we show the robustness of fidelity against detunings

of the QDs. Such robustness has been pointed out already in [45], but here we provide a more

detailed analysis for the case of a plasmonic nanoparticle array system. In this section, we

set �
g
1

= �
0

+1� and �
g
2

= �
0

�1�, and assume that �
g

1

= �
g

2

and J g
1

= J g
2

. In figure 6 the

fidelities are shown as the average of the detunings, �
0

= (�
g
1

+ �
g
2

)/2, and the difference in

the detunings, 1� = (�
g
1

� �g
2

)/2, are varied for ↵ = 0.5. Here, we have taken the matching

condition used in the previous section, ↵tmm

s

1

d

1

+�tmm

s

2

d

1

= 0. Note that this matching condition does

not guarantee the optimal fidelity

8

but it is still sufficiently useful for observing the robustness

of the fidelity against the detunings of the QDs. An optimization of the amplitude � to reach a

higher fidelity than simply using the matching condition might lead to more robustness of the

fidelity against the detunings of the QDs. This, however, involves numerical calculations that

make it complicated to understand the origin of the robustness and is not considered in this

work. In order to understand the behaviour of the fidelities as the detunings vary, as shown in

figures 6(a) and (b), it is helpful to analyse two extremal cases. The first is when the respective

detunings of the two QDs have different signs while their average is zero, i.e. �
0

/g
np

= 0 and

1�/g
np

6= 0, labelled as line A (see figure 6(c) for level diagram), corresponding to a cut along

the y-axis. The second is when the respective detunings of the two QDs are the same as each

8

For example, in the limiting case of weak coherent states, dropping all other field modes, the final state |9
f

i given

in equation (11) can be rewritten as |9
f

i
QDs

⇡ 1

2

(µ
gg
1

|ggi + µmm
1

|mmi + µ
gm
1

|gmi + µ
mg
1

|mgi), which is similar to

equation (9). For |9
f

i
QDs

to become | �i, we need to make sure that there can be no detection at drain 1 when both

the QDs are in |mi, or both are in |gi. The matching condition implies there is no detection for the case of both

QDs in state |mi, i.e. µmm
1

= 0, whereas for the case of both QDs in state |gi the probability of a detection at drain

1 can be removed by perfect DIR, i.e. t gg
s

1

d

1

= t gg
s

2

d

1

= 0 ! µ
gg
1

= 0. If imperfect DIR occurs due to the detunings of

the QDs, we can no longer guarantee that there will be no detection at drain 1 for the QDs both in state |gi, i.e.

µ
gg
1

6= 0.
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Figure 6. Fidelity of generated QD state, ⇢
QDs

, with respect to the maximally

entangled state | �i when the QDs are detuned. In (a) and (b) the input fields

are on resonance (1! = 0) as the average detuning �
0

/g
np

and the difference

in detuning 1�/g
np

of the QDs is varied for n = 2 and 3, respectively. Two

extreme regions are labelled: line A is when �
0

/g
np

= 0 and1�/g
np

6= 0, and line

B is when �
0

/g
np

6= 0 and1�/g
np

= 0. The corresponding energy level diagrams

are shown in (c). In (d) and (e) the fidelities in the lines A and B are shown,

respectively, for both n = 2 and 3. In (f) and (g) the reason why the fidelity is

more robust against a change in 1�/g
np

the more detuned �
0

/g
np

is from !
0

can

be seen from the behaviour of the transmission and reflection spectrums for two

separate values of �
0

/g
np

(solid and dashed) and a fixed value of 1�/g
np

.

other, i.e. �
0

/g
np

6= 0 and 1�/g
np

= 0, labelled as line B (see figure 6(c) for level diagram),

corresponding to a cut along the x-axis. The trends of the fidelity along two lines shown in

figures 6(d) and (e) are explained in detail in appendix D. Here, we only discuss an interesting

behaviour displayed by the fidelity around the line B.
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The fidelity change in line B is such that the greater |�
0

/g
np

| becomes, the more robust the

fidelity is against changes in |1�/g
np

|. That is, the higher the overall detuning �
0

, the better the

fidelity behaves around 1� = 0. This robustness can be understood by looking at how sensitive

the various amplitudes are as they change from their values that lead to the best fidelity in line

B when we vary 1�. Consider two examples, �
0

/g
np

= 0.02 and 0.12, for which the change in

the amplitudes as 1!/g
np

varies is shown in figures 6(f) and (g), for both n = 2 and 3. Here,

it can be seen that by varying �
0

/g
np

(solid and dashed lines represent two different values) the

resonant peaks and dips in the transmission and reflection spectrums are shifted. In addition,

for a fixed value of 1�/g
np

for the two chosen detunings of �
0

/g
np

, a variation in the spectrums

is induced. As we are interested in the difference in the detunings, 1!, one can see the values

of the spectrums at 1!/g
np

= 0 are changed less sensitively by a slight variation of 1�/g
np

for �
0

/g
np

= 0.12 than for �
0

/g
np

= 0.02. Such characteristics of transmission and reflection

spectrums result in the robustness of the fidelity against the QD detunings 1�/g
np

.

4.4. Nanowire loss and detection efficiency

As we are interested in the mapping of the input fields at the source tips to the output fields

at the drain tips in the scheme, we have assumed so far that the source and drain excitations

experience no loss when propagating into and out of the tip regions. However, in a realistic

system, the losses in the nanowires would affect the overall performance. Here, we consider two

kinds of losses in the nanowires: (i) insertion loss, which occurs when the light is transferred

from a far-field source into the source nanowires and the resulting surface plasmons propagate

along the nanowires up to the first or (2n + 2)th nanoparticle and (ii) outcoupling loss, which

occurs when surface plasmons propagate along the drain 1 nanowire and are extracted into the

far-field to be detected (or equivalently the detection efficiency of an on-chip detector directly

connected to (n + 1)th nanoparticle). For insertion loss, this is not a problem for the scheme as

we can simply compensate it by increasing the intensity of the input coherent states as much

as we need for the plasmon excitations at the first and (2n + 2)th nanoparticles. In this sense,

one of the advantages of the scheme is the use of coherent states as initial ‘seed’ states for the

generation of entanglement. These enable the scheme to be stable no matter how much loss the

initial coherent fields experience on input to the array system. On the other hand the second

type of loss, the outcoupling loss, more significantly affects the fidelity and the efficiency. The

outcoupling loss can be included as a ‘lumped detection efficiency’,  , by replacing P
d

1

with

P̃
d

1

, where P̃
d

1

= I�P1
n=0

(1 � )n|ni
d

1

hn|, which corresponds to the case of n-photons being

detected by the non-photon number resolving detectors with a probability 1 � (1 � )n
[44].

Such a treatment of outcoupling loss is valid due to the fact that for an output coherent

field at drain 1, say |µi, the expectation value of the measurement of an ideal detection with

outcoupling loss amplitude

p
 is equivalent to that of a lumped detection without outcoupling

loss, i.e. hµ|P̃
d

1

|µi = 1 � e

�|µ|2 = hpµ|P
d

1

|pµi. This compatibility between nanowire loss

and detection efficiency allows us to treat them in the same manner. To show how much the

output coupling loss (or detection efficiency) affects the entanglement generation scheme, in

figure 7 we plot the fidelity and the efficiency as the detection efficiency,  , is varied and

the number of nanoparticles, n, increases for ↵ = 0.5 and g
in

–

out

/g
np

= 0.5. As the detection

efficiency  increases, the fidelity and the efficiency become generally higher. The gradients of

the fidelity and the efficiency as  varies depend on the magnitude of the input amplitude, ↵. For

very small ↵ (or large ↵) the gradient as  varies is small, whereas for ↵ having an intermediate

value, the gradient is big.
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Figure 7. The fidelities and efficiencies for both even and odd numbers of

nanoparticles are shown as the detection efficiency (or nanowire loss),  , varies

for ↵ = 0.5 and g
in

–

out

/g
np

= 0.5. The left (right) column shows the case of n
even (odd), and the upper (lower) rows show the fidelity (efficiency).

4.5. Initialization of the QDs

In the scheme, the QDs are initially prepared in an equal superposition of |gi and |mi. However,

here we show that an equal superposition is not a strict requirement for the QD initialization.

When the QDs are prepared in arbitrary states, the initial state of the system is given by

|9 0
i

i = (cg1

|gi
1

+ cm1

|mi
1

)(cg2

|gi
2

+ cm2

|mi
2

)|↵i
s

1

|�i
s

2

|0i
d

1

|0i
d

2

, (15)

where |cg1

|2 + |cm1

|2 = 1 and |cg2

|2 + |cm2

|2 = 1. In the ideal case of the scheme, the state |9 0
i

i is

transformed into |9 0i
QDs

= {cm1

cm2

(↵tmm

s

1

d

1

+�tmm

s

2

d

1

)|mmi + cg1

cm2

�tgm

s

2

d

1

|gmi + cm1

cg2

↵tmg

s

1

d

1

|mgi},
and by choosing � to satisfy the matching condition ↵tmm

s

1

d

1

+�tmm

s

2

d

1

= 0, we have the final state

|9 0 i
ent.QDs

= 1p
N

(cm1

cg2

|mgi � cg1

cm2

|gmi), (16)

where the normalization is given by N = |cm1

cg2

|2 + |cg1

cm2

|2. Equation (16) shows that

|9 0i
ent.QDs

is the desired ideal entangled state | �i as long as cm1

cg2

= cg1

cm2

is satisfied.
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In other words, we can achieve a high fidelity even when the two QDs are not prepared in

an equal superposition. An equal superposition at the initialization stage only guarantees a

higher efficiency ⌘, but is not required for achieving a high fidelity. This property of the scheme

provides greater flexibility in the initialization of the QDs.

5. Conclusion

In this work we have described an entanglement generation scheme between two QDs

using the plasmonic modes of a metal nanoparticle array. Here, we have taken a particular

nanoparticle structure consisting of two metal nanoparticle arrays which meet at a beam splitter

of nanoparticles. Although Ohmic loss (energy dissipation) in metals generally induces damping

in the supported plasmonic systems and limits the use of plasmonics for quantum control and

state engineering, we have shown a scheme for entanglement generation that provides a robust

performance against metal loss and the length of the nanoparticle arrays. Such robustness

overcomes the length limit of nanoparticle arrays for use in nanoscale photonic quantum

networks, thus opening up further possibilities for constructing quantum plasmonic devices on

scales far below the diffraction limit. In addition, in our investigation we showed that the fidelity

of the entangled QD states was robust against inhomogeneous broadenings of the QDs, implying

the scheme works even when the QDs have different resonant frequencies. Through our analysis,

we demonstrated that the robustness of the scheme originates from the characteristics of the

transmission and reflection amplitudes of the system. The robustness against loss comes about

as the fidelity mostly depends on the behaviour of the reflection coefficient of each arm and

the reflection is less sensitive with nanoparticle losses since the energy never enters the array.

The robustness against detunings of the QDs comes about as the operating frequency to be

detected is far off-resonant with the QDs transitions. Furthermore, we discussed the effects of

detection efficiency, the initialization of the QDs, and the use of coherent states as initial states,

which reveals additional versatility of the scheme in a realistic plasmonic system. While here we

have concentrated on treating the main source of imperfection, that is metal loss, further works

geared towards an experimental demonstration could include fabrication issues such as disorder

in the resonance frequency of the nanoparticles and their coupling due to the non-ideal shape

of realistic nanoparticles and the aperiodic arrangement of the array [46]. Another fabrication

issue is the error of the 50/50 beam splitter of nanoparticles, which should also be examined in a

further study. Effects of the different life times of the ground and metastable states on generated

entanglement is also an interesting future work for the use of entanglement. The techniques

we have employed to describe the nanoparticle system in our work may also be helpful in

further theoretical and experimental studies of plasmonic nanostructures for quantum-control

applications and probing nanoscale optical phenomena. We hope that the results presented in

this paper will encourage the use of metal nanoparticle structures with more complex designs

for on-chip quantum networking.
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Appendix A. Dipole induced reflection in a metal nanoparticle array

Here, we provide an analysis of DIR in a single array of metal nanoparticles with one dipole

(QD), which corresponds to each arm in figure 1(a). The physical system is depicted in

figure A.1, where the nth nanoparticle is connected to a drain nanowire. The Hamiltonian for

the nanoparticle array is given by equation (1), yielding the Heisenberg equations

dâ
1

dt
= �

✓
i!

1

+

g
s

2

+

0
1

2

◆
â

1

� ig
1,2â

2

+

p
g

s

ŝ
in

+

p
0

1

b̂
in,1 � iJ �̂ g(m), (A.1)

dâ j

dt
= �

✓
i! j +

0 j

2

◆
â j � ig j, j�1

â j�1

� ig j, j+1

â j+1

+

p
0 j b̂in, j ( j = 2, 3, . . . , n � 1), (A.2)

dân

dt
= �

✓
i!n +

g
d

2

+

0n

2

◆
â

1

� ign�1,nân�1

+

p
g

d

d̂
in

+

p
0nb̂

in,1, (A.3)

d�̂

dt
= �

⇣
i�+

�

2

⌘
�̂ + iJ â

1

�̂z + f̂
d

, (A.4)

where !i is the natural frequency of the field oscillation at the i th nanoparticle, g j,k is the

coupling strength between the fields of the j th and kth nanoparticles, � is the transition

frequency from |gi to |ei of the dipole, J is the vacuum Rabi frequency of the dipole coupled to

the adjacent nanoparticle, 0i is the damping rate of the i th nanoparticle, � is the damping rate

of the dipole, and g
s (d) is the coupling strength of the source (drain) nanowire to its adjacent

nanoparticle. The operators â†

i (âi ) represent the creation (annihilation) operators associated

with a dipole-field excitation at i th nanoparticle, �̂ = |gihe|, and �̂z = |eihe| � |gihg|. The

operators ŝ
in (out) and d̂

in (out) represent the input (output) annihilation operators of the fields

of the nanowires, respectively, which satisfy the boundary conditions â
1

= 1p
g

s

(ŝ
in

+ ŝ
out

) and

ân = 1p
g

d

(d̂
in

+ d̂
out

). The input (output) field of the i th nanoparticle’s bath is represented by

b̂
in (out),i, which satisfy the boundary conditions âi = 1p

0i
(b̂

in,i + b̂
out,i) for j = 1, . . . , n, and f̂

d

denotes the noise operator for the dipole.

For the above description to be valid all system parameters are restricted by the appropriate

approximations mentioned in the main text of this paper. We also assume, for simplicity,

that !i = !
0

for i = 1, . . . , n, g j,k = g
np

, 0i = 0
0

for i = 1, . . . , n, and g
s

= g
d

= g
in

–

out

. The

damping rate of the dipole is assumed to be relatively small compared to other rates, so that the

noise operators, f̂
d

, can be neglected in that they do not significantly affect quantum coherence

of the system. Also, here we consider either longitudinal or transverse polarization along the

array according to the direction of electron-charge-density oscillations. We impose the weak-

excitation regime, where the dipole is assumed to be predominantly in the initial state |gi.
Physically, the weak-excitation limit is valid when a single-excitation pulse has a duration that

is much longer than the spontaneous lifetime of the dipole [47]. Such an approximation has

been commonly adopted in many quantum optics calculations [25, 48]. In this limit, �̂z can be
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Figure A.1. (a) Setup for DIR. A single array of metal nanoparticles with one

dipole (QD) coupled to the first nanoparticle and a tapered metal nanowire

waveguide on the left-hand side (source), which focuses light to the end of its

tip and excites a localized surface plasmon on the adjacent nanoparticle. The

excitation propagates across the array of nanoparticles and exits via another

tapered metal nanowire waveguide on the right-hand side (drain). All metal

regions have permittivity ✏
m

(!) and dielectric regions have permittivity ✏
d

,

as defined in the text. Panels (b) and (c) show transmission, reflection and

nanoparticle absorption when �/g
np

= 0 and 0.2, respectively, for n = 1. Solid

lines are for DIR (QD in |gi), and dashed lines are for when there is no DIR

(QD in |mi). When 1! ⇡ �, DIR occurs, and both transmission and loss from

nanoparticle dissipation are nearly zero, while reflection is close to one.

replaced by its mean value h�̂zi ⇡ �1, so that the total coupled Heisenberg equations give rise

to the scattering matrix

ŝ†

in

(!) = r
s

(!)ŝ†

out

(!) + t
s

(!)d̂†

out

(!) + f̂ †

out,s(!)

d̂†

in

(!) = t
d

(!)ŝ†

out

(!) + r
d

(!)ŝ†

out

(!) + f̂ †

out,d(!),

(A.5)

where the noise operators for the nanoparticles are f̂ †

out,s(!) = P
i t

s,bi(!)b̂†

out,i(!) and

f̂ †

out,d(!) = P
i b

d,bi(!)b̂†

out,i(!). For a given input field at the source (drain) nanowires, the

transmission and reflection amplitudes are represented by t
s (d) and r

s (d), respectively, and the

coefficient b
s (d),bi

denotes the transition amplitude to a bath mode at the i th nanoparticle.

Here, |t
s (d)(!)|2 + |r

s (d)(!)|2 +

P
i |b

s (d),bi(!)|2 6 1, the left-hand side does not reach unity

as it is reduced by the loss of the dipole at the given frequency ! for which the dipole

interacts with the nanoparticle. We define the transmission, reflection, and absorption energy

as T
s (d)(!) = |t

s (d)(!)|2, R
s (d)(!) = |r

s (d)(!)|2 and A
s (d)(!) = P

j |b
s (d),bj(!)|2, respectively.

A.1. Single nanoparticle

We first consider the case of n = 1 in order to provide a basic understanding of the physical

mechanism for DIR. Arbitrary n is considered in the next section. For a given input field from
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the source nanowire we have

t
s

(1!) = g
in–out

(�
2

+ i(��1!))

J 2

+ (�
2

+ i(��1!))(g
in–out

+

0
0

2

� i1!)
, (A.6)

r
s

(1!) = � J 2

+ (�
2

+ i(��1!))(00

2

� i1!)

J 2

+ (�
2

+ i(��1!))(g
in–out

+

0
0

2

� i1!)
, (A.7)

b
s,b

1

(1!) =
p

g
in–out

p
0

0

(�
2

+ i(��1!))

J 2

+ (�
2

+ i(��1!))(g
in–out

+

0
0

2

� i1!)
, (A.8)

where 1! = !�!
0

and � =��!
0

denote the detunings of the input field from the

nanoparticle resonance and the dipole resonance from nanoparticle resonance, respectively. If

there is no dipole in the proximity of the nanoparticle, i.e. J = 0, in the ideal case (0
0

= 0),

the field is entirely transmitted on resonance (1! = !�!
0

= 0), i.e. r
s

(1! = 0) = 0 and

t
s

(1! = 0) = 1. Once the loss in the metal nanoparticle is included, i.e. 0
0

6= 0, the field is

no longer entirely transmitted on resonance, i.e., t
s

(0) 6= 1, as shown in figure A.1(b) as dashed

lines. However, if there is a dipole in the proximity of the nanoparticle, i.e. J 6= 0, then the

transmission and reflection behave differently from the case of no dipole as we discuss next.

A.1.1. Dipole and single nanoparticle in tune (� = 0). Consider the case where the dipole is

resonant with the nanoparticle (� = 0), equations (A.6)–(A.8) can be rewritten as

t
s

(1!) = g
in

–

out

(�
2

� i1!)

J 2

+ (�
2

� i1!)(g
in–out

+

0
0

2

� i1!)
, (A.9)

r
s

(1!) = � J 2

+ (�
2

� i1!)(00

2

� i1!)

J 2

+ (�
2

� i1!)(g
in–out

+

0
0

2

� i1!)
, (A.10)

b
s,b

1

(1!) =
p

g
in–out

p
0

0

(�
2

� i1!)

J 2

+ (�
2

� i1!)(g
in–out

+

0
0

2

� i1!)
. (A.11)

In this case, when 2J 2/� � g
in

–

out

+0
0

/2 we have t
s

(0) ⇡ 0 and r
s

(0) ⇡ �1, with a ⇡ phase

shift on resonance (1! = 0), so that the field is totally reflected, similar to the frequency

selective perfect mirror described by Shen and Fan [49]. This is a quantum interference effect

called DIR. It is based on the same mechanism as DIT originally introduced by Waks and

Vu

ˇ

ckovi

´

c [25], in which the cavity–dipole system is driven by an external field and the cavity

field destructively interferes with the excited state population of the dipole. Here, a metal

nanoparticle serves as a bad cavity, where cavity decay rate0
0

is larger than the dipole decay rate

� . Nevertheless, in this bad cavity regime, DIR (or transmission) still provides strong dispersive

properties (as shown in figure A.1(b) as solid lines), which is one of the interesting merits of

the original DIT scheme, as pointed out by Waks and Vu

ˇ

ckovi

´

c [25]. Our plasmonic system for

n = 1 is mathematically equivalent to driving a double sided cavity with an incident field.

In order to understand the origin of the dispersive properties, we use the Purcell factor,

defined as F
p

= 2J 2

�
1

g
in–out

+0
0

/2

(proportional to the ratio of the dipole decay rate into the

nanoparticle, J , to the bare dipole decay rate, � ). In terms of the Purcell factor, the transition
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amplitudes can be rewritten on resonance as t
s

(1! = 0) = t
0

/(F
p

+ 1), r
s

(1! = 0) = �(F
p

�
r

0

)/(F
p

+ 1) and b
s,b

1

(1! = 0) = a
0

/(F
p

+ 1), where t
0

= g
in

–

out

g
in

–

out

+0
0

/2

, r
0

= � 0
0

/2

g
in

–

out

+0
0

/2

, and a
0

=
pg

in

–

out

p
0

0

g
in

–

out

+0
0

/2

are the transmission, reflection and absorption amplitudes for a bare nanoparticle in

the absence of the dipole. One can see that in order to have DIR a large Purcell factor is required,

i.e. F
p

� 1. However, as in DIT, we do not need the full normal mode splitting condition

J > g
in

–

out

+0
0

/2, known as the high-Q cavity regime. We can achieve a large Purcell factor

when � ⌧ g
in

–

out

+0
0

/2 even for much smaller values of J . This is known as the low-Q cavity

regime, where the coupling strength J between the nanoparticle and the dipole is less than the

nanoparticle decay rate 0
0

.

When the nanoparticle plasmonic excitations and the |gi–|ei transition of the dipole are

in tune (� = 0), the overall spectrum of the reflection amplitude is always symmetric with

respect to 1! = 0, at which the local maximum is located, as shown in figure A.1(b). Here,

the dipole dissipation rate has a stronger effect on the reflection (transmission) of an on-

resonance excitation than the nanoparticle dissipation rate does. When � = 0, a plasmon is

still completely reflected, even with the presence of the nanoparticle loss 0
0

, whereas when

� 6= 0, the dissipation of the dipole interrupts the quantum interference, so that the nanoparticle

is marginally excited for a plasmon at ! =� and the loss via the nanoparticle increases. Two

minima (maxima) in the reflection (transmission) spectrum are located at1! ⇡ ±J , in the limit

of a large Purcell factor F
p

� 1, which corresponds to the Rabi-split frequencies ! =�± J .

We find that the linewidth of the broadest transmission peak is the nanoparticle linewidth

whereas the linewidth of the narrow dip corresponds to the linewidth of the dipole dressed

by the nanoparticle excitation. This quantum interference that produces the narrow reflection

window with a simultaneously strong dispersion results in a significant enhancement of the

group delay and the possibility of a slowdown or ‘storage’ of light, as in electromagnetic induced

transparency [50].

A.1.2. Dipole and single nanoparticle detuned (� 6= 0). Consider the case where the dipole

is not resonant with the nanoparticle, i.e. � 6= 0. When the dipole transition frequency � is

detuned slightly away from the nanoparticle frequency !
0

, the spectrum of the reflection

and transmission amplitudes become asymmetric, which is known as a Fano resonance, as

discussed by Shen and Fan [49]. The local maximum (minimum) in the reflection (transmission)

spectrum is located at 1! = � in the limit of a large Purcell factor F
p

� 1, regardless of the

detuning between the dipole and the nanoparticle, as shown by the solid lines of figures A.1(b)

and (c). On the other hand, when the dipole is very far detuned from the nanoparticle

resonance frequency, the dipole is essentially decoupled from the nanoparticle field, so that the

reflection (transmission) properties are determined by the nanoparticle only, and the reflection

(transmission) spectrum dips down to zero at the nanoparticle frequency ! = !
0

, as shown by

the dashed lines in figures A.1(b) and (c). This feature could be exploited to achieve a fast

single-excitation switch: for an incoming photon with frequency ! = !
0

, the transmission is 1

when the dipole is in tune with the nanoparticle (�= !
0

), while the transmission is essentially

0 when the dipole is far-detuned. Thus by tuning the transition frequency of the dipole, the

single-plasmon transport can be regulated and the setup acts as a single-plasmon (or photon in

the far field) switch, as pointed out in [25].
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A.2. Arbitrary number of nanoparticles

We now increase the number of nanoparticles in the array, while keeping the dipole coupled to

the first nanoparticle, as shown in figure A.1. As in the case of n = 1, we have transmission,

reflection and absorption amplitudes from the scattering matrix given in equations (A.6)–(A.8).

If the dipole is decoupled from nanoparticle, the transmission and the reflection amplitudes

follow the characteristic of a metal nanoparticle array studied in [13], which have different

dependencies on g
in

–

out

. We classify their behaviour into two groups: even and odd numbers

of nanoparticles in the array. As a representative of even and odd numbers of nanoparticles,

we consider the case of n = 2 and 3. As shown in [13], for an odd number of nanoparticles,

there is always a resonance at the natural frequency !
0

, whereas for an even number of

nanoparticles, a resonance property at the natural frequency !
0

depends on the magnitude of

g
in

–

out

/g
np

. Thus, the transmission properties as g
in

–

out

/g
np

is varied at 1! = 0 are different for

n = 2 and 3 when the dipole is decoupled from nanoparticle, as shown in figures A.2(a) and

(b). Here, the transmission (reflection) has a maximum (minimum) value at g
in

–

out

/g
np

= 2 for

n = 2, whereas the transmission (reflection) rises (drops) quickly as g
in

–

out

/g
np

is increased for

n = 3. In addition, in figure A.2 we show the dependence of the transmission and reflection

with varying amount of metal loss for n = 2 and 3. The dependence on the metal loss is more

sensitive for the transmission than for the reflection, regardless of the parity of the number of

nanoparticles, which is the main reason for the robustness against the metal loss mentioned in

the main text. As the metal loss is increased, the transmissions become lower; for n = 2 (or any

even number) they still have a maximum near g
in

–

out

/g
np

⇡ 2, which is reflected in the efficiency

as shown in figure 4(c). On the other hand, for n = 3 (or any odd number) the transmissions

are still flat as g
in

–

out

/g
np

is increased, which is also reflected in the efficiency, as shown in

figure 4(d). The reflection amplitudes shown in figures A.2(c) and (d) are highly related to the

transition amplitude t gm
s

1

s

1

shown in figures C.1(a) and (b), enabling the scheme to be robust to

the metal loss.

On the other hand, if the nanoparticle is coupled to the dipole whose detuning is zero,

�/g
np

= 0, DIR can be observed at 1! = 0 for n = 2 and 3 when F
p

� 1. In figure A.2, while

the transmission is nearly zero (dashed lines in (a) and (b)), the reflection (dashed lines in (c) and

(d)) is nearly one and decreased only slightly with g
in

–

out

/g
np

, which is related to the coefficient

tmg
s

1

s

1

in figures C.1(a) and (b). In addition, when DIR occurs, both the transmission and reflection

amplitudes are largely insensitive to nanoparticle losses, as expected from the case of n = 1.

In figure A.3, the spectral profile of the transmission is presented as 1!/g
np

and g
in

–

out

/g
np

are varied for n = 2, 3, 4, 5, 6 and 7, in the presence of metal loss 0
0

/g
np

= 0.1, as in [13].

Note that on resonance (1! = 0) DIR can be observed regardless of g
in

–

out

/g
np

and the number

of nanoparticles, where the transmission becomes nearly zero for 1!/g
np

= 0, with the dipole

detuning given as �/g
np

= 0.

Appendix B. Pulse width of input coherent fields

Here, we investigate the effects of the pulse width of the coherent field injected into the

source nanowires. We start by focusing on the coherent field that comes from the source

nanowire on the left-hand side, whose multi-mode coherent state can be described by

|{↵}i
s

1

= exp(ŝ†

in,↵ � ŝ
in,↵)|0i

s

1

, where the wavepacket operators are ŝ†

in,↵ = R 1
�1 d!↵(!)ŝ†

in

(!),

with

R 1
�1 d!|↵(!)|2 = hn̂↵i [51]. For concreteness, we consider a Gaussian wavepacket with
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Figure A.2. DIR for an arbitrary number of nanoparticles. The transmission

T
s

(!) (upper) and reflection R
s

(!) (lower) at 1! = 0 is shown as g
in

–

out

/g
np

is varied for n = 2 (left) and n = 3 (right), as representatives of even and odd

number of nanoparticles respectively. If the dipole is decoupled from its adjacent

nanoparticle (solid lines), their behaviour as g
in

–

out

/g
np

is varied becomes

different; the transmission (reflection) has a maximum (minimum) value at

g
in

–

out

/g
np

= 2 for n = 2, whereas the transmission (reflection) rises (drops)

quickly as g
in

–

out

/g
np

is increased for n = 3. Furthermore the transmission and

reflection are quite sensitive to 0
0

/g
np

changing. On the other hand, if the dipole

with a detuning of �/g
np

= 0 is coupled to its adjacent nanoparticle (dashed

lines), DIR can be observed when F
p

� 1 for both n = 2 and 3. Furthermore,

the transmission and reflection are no longer sensitive to 0
0

/g
np

changing; the

transmission is nearly zero regardless of g
in

–

out

/g
np

, and the reflection only

slightly drops from 1 as g
in

–

out

/g
np

increases due to the decay of the dipole,

� . As the number of nanoparticles is increased further, similar trends to those of

increasing the metal loss are seen, since the effects of increasing n are equivalent

to increasing 0
0

/g
np

for a fixed number of nanoparticles, as discussed in the main

text.

spectral amplitude profile ↵(!) = (2⇡� 2

↵ )
�1/4

e

�(!
0

�!)2/4� 2

↵
, where !

0

is the central frequency

and �↵ = �!↵/(2
p

2 ln 2) is the standard deviation corresponding to a full width at half

maximum bandwidth �!↵ for the spectral intensity profile |↵(!)|2.

Such a coherent field pulse should be carefully employed with appropriate constraints for

the analysis of this work to be valid. Firstly, for the monochromatic approximation (1! = 0)

to be valid, �!↵ should be narrow enough such that as the entanglement generation scheme is
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Figure A.3. The transmission, T
s

(!), as the nanoparticle detuning frequency

1!/g
np

and input–output coupling g
in

–

out

/g
np

are varied for arrays of n =
2, 3, 4, 5, 6 and 7 nanoparticles. Regardless of the parity of the nanoparticle

number, the early increase of g
in

–

out

/g
np

enables the off-resonant transfer from

the source nanowire to the first nanoparticle, whereas its late increase leads to

strong coupling as if the first nanoparticle becomes the extended ‘tip’ of the

nanowire. Thus the large g
in

–

out

/g
np

implies that the number of nanoparticles

is effectively reduced to n � 2. Here, DIR occurs at 1! = 0, when the dipole

detuning is given by �/g
np

= 0, and the transmission becomes nearly zero

regardless of g
in

–

out

/g
np

and the number of nanoparticles.

carried out, each amplitude of the system hardly changes (or varies slowly). This is equivalent

to non-dispersive transfer of the plasmons in the metal nanoparticle array [13]. Secondly,

the higher-order photon number contributions that induce decoherence impose a constraint

of hn̂↵i⌧1 for a high-fidelity entangled state to be generated between the QDs. Thirdly, the

analysis of the protocol using DIR is valid in the weak excitation regime where the QDs are

unsaturated, i.e. h�̂ g
z (t)i ⇡ �1 which is equivalent to h�̂ g†

1

�̂
g
1

i ⌧ 1. If the amplitude of the input

coherent field is large enough such that the g–e transitions of the QDs are saturated, then they

will lead to an optical nonlinearity and linewidth broadening [52], and equation (6) can no

longer be treated in the linear regime. To investigate the implications of this weak excitation

limit, we use the Heisenberg equations of motion for the first nanoparticle and QD

1

, and ignore

the field operator for the second nanoparticle since it never has the chance to be excited when
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DIR occurs. Thus, equations (2) and (6) can be rewritten in the weak excitation regime as

dâ
1

dt
= �

✓
i!

0

+

g
in–out

2

+

0
0

2

◆
â

1

+

p
g

in–out

ŝ
in,1 +

p
0

1

b̂
in,1 � iJ g

1

�̂
g
1

, (B.1)

d�̂
g
1

dt
= �

✓
i�

g
1

+

�
g

1

2

◆
�̂

g
1

� iJ g
1

â
1

. (B.2)

Eliminating â
1

from the above equations when (
g

in

–

out

2

+

0
0

2

)�
g

2

⌧ J g
1

2

, we have at resonance

(1! ⇡ 0),

✓
� i�

g
1

(
g

in–out

2

+

0
0

2

) � J g
1

2

◆
�̂

g
1

= �iJ g
1

p
g

in–out

ŝ
in,1 � iJ g

1

p
0

0

b̂
in,1. (B.3)

The above equation can be multiplied by its conjugate to give

h�̂ g†

1

�̂
g
1

i ⇡ J g
1

2g
in–out

J g
1

4

+ �2

1

⇣
g

in–out

2

+

0
0

2

⌘
2

hŝ†

in,1ŝ
in,1i, (B.4)

where hb̂†

in,1b̂
in,1i ⇡ 0, hŝ†

in,1b̂
in,1i ⇡ 0 and hb̂†

in,1ŝ
in,1i ⇡ 0 are assumed, and h�̂ g†

1

�̂
g
1

i represents

the probability of QD

1

being in the excited state. Here, hŝ†

in,1ŝ
in,1i is identified as the total flux

of photons in the input field |↵i
s

1

of frequency !
0

. In the weak excitation limit, h�̂ g†

1

�̂
g
1

i ⌧ 1,

which finally puts a limit on the excitation number hn̂↵i of

J g
1

2

g
in

–

out

+

�2

1

(g
in

–

out

+0
0

)2

4J g
1

2g
in

–

out

� |↵|2
�⌧↵

⇠ hn̂↵i
�⌧↵

, (B.5)

where �⌧↵ is the pulse width of |{↵}i
s

1

. Note that this third constraint of the weak field

excitation approximation can also cover the first and second constraints of sufficiently narrow

bandwidth �!↵ (or equivalently long pulse width �⌧↵) and low excitation number hn̂↵i⌧1.

Similar constraints on hn̂�i for |{�}i
s

2

can be derived from the Heisenberg equations of motion

for the (n + 2)th nanoparticle and QD

2

.

Appendix C. Details for robust fidelity against metal loss

Here, we explain the behaviours of fidelity and efficiency of section 4.1 in detail by analysing the

final state |9
f

i given in equation (11). First, let us consider the fidelity. For the case of resonant

QDs (�
g
1

= �
g
2

= 0), we have the coherent amplitudes for drain 1 as µ
gm
1

= �µ
mg
1

, a condition

required to generate a perfect singlet state, | �i, as seen in the discussion of the ‘limiting

scenario’ in section 3. We also have the coherent amplitudes for drain 2 as µ
gm
2

= µ
mg
2

, so that

the corresponding term in equation (11) can be factored out from |9
f

i. On the other hand, the

coherent amplitudes for the other output modes, corresponding to the sources, ⇠
gm
1

(= �i⇠
mg
2

)
and ⇠

mg
1

(= �i⇠
gm
2

), are not equal to each other and cannot be factored out, which leads to

dephasing of the QD state. In addition, all of the bath modes (modelling loss at the nanoparticles)

are also involved in dephasing the QD state in a similar way. These bath modes dominate the

value of the fidelity for large values of 0
0

/g
np

as ⇢
23

(= ⇢⇤
32

) ! 0. Nevertheless, the dephasing

effects of the bath modes and their impact on the fidelity are relatively weak compared to the

source modes until large losses are incurred in the system, i.e. for 0
0

/g
np

> 1. For these reasons,
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Figure C.1. Origin of the robustness of the fidelity. In (a) and (b) the transition

amplitudes tmg
s

1

s

1

and t gm
s

1

s

1

are shown. In (c) and (d) the density matrix entry

⇢
23

is shown. In all plots g
in

–

out

/g
np

is varied for set amounts of metal loss:

0
0

/g
np

= 0.01, 0.1, 0.5 and 1.

both the coherent amplitudes for the source output modes, ⇠
gm
1

and ⇠
mg
1

, are predominantly

responsible for the behaviour of the fidelity before 0
0

/g
np

becomes very large. Thus, we focus

on investigating the behaviour of the amplitudes ⇠
gm
1

and ⇠
mg
1

. Due to the beam splitter, the

transition amplitudes t gm
s

2

s

1

= 0 and tmg
s

2

s

1

= 0, so that ⇠
gm
1

= ↵t gm
s

1

s

1

and ⇠
mg
1

= ↵tmg
s

1

s

1

, where t gm
s

1

s

1

is the

reflection coefficient when DIR occurs for QD

1

, while tmg
s

1

s

1

is related to the reflection coefficient

of a single arm in the absence of QD

1

. Thus, the more similar tmg
s

1

s

1

and t gm
s

1

s

1

are to each other, the

more similar ⇠
gm
1

and ⇠
mg
1

are to each other, and the output states in the corresponding modes

can be factored out from the state |9
f

i in equation (11). This leads to a high fidelity. Otherwise,

the more tmg
s

1

s

1

and t gm
s

1

s

1

are dissimilar to each other, the more they cause dephasing.

To compare ⇠
gm
1

and ⇠
mg
1

, we choose as an example ↵ = 0.5 in figure C.1, and show the

dependence of t gm
s

1

s

1

and tmg
s

1

s

1

on the input/output coupling g
in

–

out

/g
np

for a set of values of

metal loss. In figures C.1(a) and (b), the coefficient t gm
s

1

s

1

(dashed line), which is related to the

occurrence of DIR, does not change appreciably with respect to the increase in loss. This is

because the first nanoparticle is not excited due to quantum interference when DIR occurs

(see appendix A.2), similar to a waveguide coupled to a cavity with a dipole [45]. On the

other hand, the coefficient related to the absence of a QD, tmg
s

1

s

1

, exhibits the characteristics

of a nanoparticle array, where the dependence on g
in

–

out

/g
np

is different for even and odd

numbers of nanoparticles, as seen in appendix A.2. For n = 2, the coefficient tmg
s

1

s

1

diverges from

t gm
s

1

s

1

as g
in

–

out

/g
np

increases and reveals a slight variation in 0
0

/g
np

, which explains the falling

fidelity as g
in

–

out

/g
np

increases and robustness of the fidelity with increasing 0
0

/g
np

, as shown in

figure 4(a). For n = 3, the coefficient tmg
s

1

s

1

also diverges from t gm
s

1

s

1

as g
in

–

out

/g
np

increases, which
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again explains the fidelity decay as g
in

–

out

/g
np

increases in figure 4(b). However, contrary to the

case of n = 2, the coefficient tmg
s

1

s

1

moves closer to t gm
s

1

s

1

as 0
0

/g
np

increases when g
in

–

out

/g
np

is

small, and shows a bigger variation compared to the n = 2 case when g
in

–

out

/g
np

is increased, as

shown in figure C.1(b). This analysis explains the slight increase in fidelity with 0
0

/g
np

for small

g
in

–

out

/g
np

, and the robust fidelity with 0
0

/g
np

for large g
in

–

out

/g
np

that is shown in figure 4(b).

While ⇠
gm
1

and ⇠
mg
1

are approximately responsible for the fidelity when �
g
1

= �
g
2

= 0, the entry

⇢
23

in the QD density matrix is the only entry that directly determines the fidelity among the

different entries of ⇢
QDs

, since ⇢
22

= ⇢
33

= 1/2 when �
g
1

= �
g
2

= 0. In figures C.1(c) and (d), we

plot ⇢
23

. By comparing the behaviour of ⇢
23

in these plots with that of the fidelity in figures 4(a)

and (b), it can be seen that as the real part of ⇢
23

goes to �1

2

, the fidelity increases. Thus, the

behaviour of ⇢
23

follows the trend of tmg
s

1

s

1

with increasing 0
0

/g
np

and g
in

–

out

/g
np

, except for the

intermediate regime of g
in

–

out

/g
np

. Here, there is an interplay of other field modes in the system,

which become significant and make a small difference in the trend of ⇢
23

compared to that of

the source coherent amplitudes ⇠
gm
1

and ⇠
mg
1

.

Secondly, let us consider the efficiency. In contrast to the fidelity, the efficiency depends

only on the amplitudes µ
gg
1

, µmm
1

, µ
gm
1

and µ
mg
1

, as seen in equation (14), which are mostly

related to the transmission amplitudes of the two arms. In section A.2, the square of the

transmission amplitudes are presented in figure A.2, where for n = 2 the transmission is found

to have its highest value at g
in

–

out

/g
np

= 2, whereas for n = 3 the transmission quickly increases

with increasing g
in

–

out

/g
np

. Such characteristics of the nanoparticle array are reflected in the

efficiencies for both n = 2 and 3, as shown in figures 4(c) and (d). Higher values of the

transmission as g
in

–

out

/g
np

is varied enable the probability of the injected plasmons to exit

via drain nanowires to become more likely, so that the efficiency to detect excitations at drain

1 increases (compare figures 4(c) and (d) with figures A.2(a) and (b)). This shows that the

efficiency does not have simple trade-off with the fidelity in figure 4.

Appendix D. Details for robust fidelity against detunings of the QDs

In line A of figure 6, imperfect DIRs at both ends of the array occurs due to the QD detunings.

The asymmetric detuning leads to µ
gg
1

6= 0, so that |9
f

i
QDs

⇡ 1

2

(µ
gg
1

|ggi + µ
gm
1

|gmi + µ
mg
1

|mgi)
and there exists a non-zero probability of detection at drain 1 when both the QDs are in |gi.
Thus, the state |ggi gives a detection, causing a loss of fidelity. Furthermore, in line A we have

µ
gm
1

= �(µ
mg
1

)⇤
. This is not a problem if the respective imaginary terms are approximately zero.

However, if this is not the case then it leads to dephasing in the final QD state. Here, the phase

difference between µ
gm
1

and µ
mg
1

affects the relative phase � of the generated entangled QD state

as

1p
2

(|gmi + e

i�|mgi). From this point-of-view, µ
gm
1

= �µ
mg
1

is highly desirable for achieving

a high-fidelity, as pointed out in the limiting scenario in section 3. Thus, increasing |1�/g
np

|
causes a loss of fidelity since the respective imaginary terms of µ

gm
1

and µ
mg
1

are increased, as

can be seen in figure 6(d).

In line B of figure 6, the equal detunings of the QDs enables µ
gg
1

= 0 to be obtained via

destructive interference with the help of the matching condition, i.e. |9
f

i
QDs

⇡ 1

2

(µ
gm
1

|gmi +

µ
mg
1

|mgi). It also enables µ
gm
1

= �µ
mg
1

to be obtained, which provides a high fidelity, in contrast

to line A. Here, increasing |�
0

/g
np

| disturbs the DIRs at both ends of the array, so that the

amplitudes related to the occurrence of DIR are no longer much different from the amplitudes

that follow the characteristics of the system in the absence of the QDs. Thus, all the other

field modes for |gmi are approximately equal to those for |mgi and can be factored out so
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that |9
f

i ! (µ
gm
1

|gmi + µ
mg
1

|mgi) ⌦ |all fieldsi. In addition, the magnitudes of µ
gm
1

and µ
mg
1

decrease with increasing |�
0

/g
np

| such that |9
f

i moves closer to the state |9
f

i
QDs

obtained in

the limiting scenario of weak coherent states. As a result, the fidelities increase with increasing

|�
0

/g
np

| for both n = 2 and 3, as shown in figure 6(e).
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