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We analyze quantum correlations arising in two coupled dimer systems in the presence of
independent losses and driven by a fluctuating field. For the case of the interaction being
of a Heisenberg exchange type, we first analytically show the possibility for stationary
entanglement and then analyze its robustness as a function of the signal-to-noise ratio
of the pump. We find that for a common fluctuating driving field, stochastic resonance
effects appear as function of the ratio between field strength and noise strength. The
effect disappears in the case of uncorrelated or separate pumps. Our result is general
and could be applied to different quantum systems ranging from electron spins in solid
state, to ions trap technologies and cold atom set ups.

Keywords: Entanglement production and manipulation; decoherence and open quantum
systems; quantum fluctuations and quantum noise.

1. Introduction

Entanglement is nowadays commonly considered a resource for quantum informa-
tion processing.1 Being of a purely quantum nature can be easily degraded by
reservoir contaminations. Nevertheless, recently the possibility of having stationary
entanglement in open quantum systems has been put forward,2–10 also achieving
experimental evidence.11 However it is not clear how robust is such stationary en-
tanglement against other sources of noise that can eventually affect the system,
especially when originating from the driving field.

In this work we aim at clarifying the robustness of stationary entanglement in
lossy coupled systems in the presence of noise in the amplitude fluctuations of the
driving field. We assume the case of the always on exchange interactions between
the systems, usually employed when dealing with local dissipative environments.5–9
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The entanglement robustness is characterized by means of a figure of merit related
to the quantum concurrence and accounts for the signal to noise ratio of the driving
field. We distinguish the case of local and global fluctuations and show that in the
latter case stochastic resonance effects12 can emerge for an optimal ratio between
the strength and the noise of the common driving field. The effect disappears in
the case of uncorrelated or separate pumps.

Our analysis is general, the results are analytic, and could be applied to different
set ups ranging from electron spins in double quantum dots or in effective spin
models generated in driven ions, cold atoms and coupled cavity arrays set ups.13–16

2. The System

We assume two coupled dimer systems labelled by A and B interacting through an
exchange interaction. The systems are subject to incoherent driving of amplitude
α from outside and dissipate independently into two separate reservoirs with equal
dissipation rates given by γ (Fig. 1). The Hamiltonian describing the coherent part
of the interaction in this case is:

H = J(σ†
AσB + σAσ

†
B) + α(σy

A + σy
B) , (1)

with σs the usual Pauli operators on C2 such that σ = (σx + ισy)/2 and 2σ†σ −
I = σz . (Throughout the paper ι denotes the imaginary unit.)

The open system dynamics will be described by the master equation

ρ̇ = −ι[H, ρ] +D[σA]ρ+D[σB ]ρ , (2)

where

D[a]b := γ(2aba† − a†ab− ba†a), (3)

denotes the dissipative super-operator and γ is the decay rate into the two separate
environments.
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Fig. 1. Two coupled dimer systems (atoms or quantum dots or spins) are interacting and dissi-
pating in different reservoirs. In (b) two uncorrelated noisy pumps are continuously driving the
systems whereas in (a) the same pump is driving both.
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In this work besides looking for entanglement at steady state, we would also
investigate its robustness against fluctuations in the driving field. We thus assume
that the driving field on top of its coherent amplitude α, exhibits a Gaussian white
noise term ξ(t), with

⟨ξ(t)⟩ = 0 , ⟨ξ(t)ξ(t′)⟩ = 2ηδ(t− t′) , (4)

and η ≥ 0 measuring the noise strength.
Hence the master Eq. (2) will become:

ρ̇ = −ι[H, ρ] +D[σA]ρ+D[σB ]ρ+N [σy
A;σ

y
B]ρ , (5)

with N the superoperator describing the noisy effects of ξ(t).
The steady state solution of Eq. (5) can be found by writing the density operator

and the other operators in a matrix form, e.g., in the basis B = {|0⟩A|0⟩B, |0⟩A|1⟩B,
|1⟩A|0⟩B, |1⟩A|1⟩B}. Let us then parametrize the stationary density operator as:

ρss =

⎛

⎜

⎜

⎜

⎜

⎝

a b1 + ιb2 c1 + ιc2 d1 + ιd2

b1 − ιb2 e f1 + ιf2 g1 + ιg2

c1 − ιc2 f1 − ιf2 h i1 + ιi2

d1 − ιd2 g1 − ιg2 i1 − ιi2 1− a− e− h

⎞

⎟

⎟

⎟

⎟

⎠

. (6)

Once we know the coefficients a, b1, b2, c1, c2, d1, d2, e, f1, f2, g1, g2, h, i1, i2, to
quantify the entanglement we will use the concurrence17

C(ρss) := max{0,λ1 − λ2 − λ3 − λ4} , (7)

where λi’s are, in decreasing order, the nonnegative square roots of the moduli of
the eigenvalues of ρssρ̃ss with

ρ̃ss := (σy
1 ⊗ σy

2 )ρ
∗
ss(σ

y
1 ⊗ σy

2 ) , (8)

and ρ∗ss denotes the complex conjugate of ρss.
We will separate our analysis in two cases, the common driving case where both

systems are subject to the same fluctuating pump and the case when independent
driving is applied to each one.

3. Common Driving Field

If the driving field is common to both systems (like in the system discussed in
Ref. 18) then the two systems experience the same fluctuations. Hence the super-
operator N reads (see also Ref. 19):

N [σy
A;σ

y
B ]ρ = −η[(σy

A + σy
B), [(σ

y
A + σy

B), ρ]] . (9)

We can then analytically solve the linear system of equations coming from the
master Eq. (5)

0 = −ιJ [(σ†
AσB + σAσ

†
B), ρ]− ια[(σy

A + σy
B), ρ]

− η[(σy
A + σy

B), [(σ
y
A + σy

B), ρ]] +D[σA]ρ+ D[σB ]ρ, (10)
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Fig. 2. Steady state entanglement as quantified by concurrence C(α, η) versus α and η for J = 2
in units of the dissipation rate γ.

for a, b1, b2, c1, c2, d1, d2, e, f1, f2, g1, g2, h, i1, i2. The explicit solution is reported
in Appendix A. In Fig. 2 we plot the concurrence (7) versus amplitude of the pump
α and strength of the fluctuations η for a fixed nonzero values of J .

We note here that C is not always monotonically decreasing versus η which can
be seen by introducing the quantity

∆(α, η) := C(α, η) − C(α, η = 0) (11)

for C(α, η) − C(α, η = 0) > 0, which quantifies the difference (if positive) be-
tween the concurrence in presence and absence of fluctuations in the driving field.
∆(α, η) := 0 when C(α, η)−C(α, η = 0) ≤ 0. The inverse U shape of such a quan-
tity versus η, as shown in Fig. 3, indicates a stochastic resonance effect.12 That
is, there is an optimal nonzero value of noise strength for the driving field which
maximize the concurrence. In Fig. 2 we may also observe that entanglement is quite

0.0
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0.2

Α

0.000.010.020.03 Η

0.000

0.001
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C

Fig. 3. The quantity ∆(α, η) versus α and η for J = 2 (units as in Fig. 2).
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Fig. 4. The quantity SNR is plotted versus J in units of the dissipation rate γ. Top (bottom)
curve refers to the separable (nonseparable) case.

robust in the range of pumping slightly larger than the decay rate and it survives
for white noise up to 10% in the fluctuating field.

To quantify the robustness of entanglement versus noise in the driving field
we may consider the signal-to-noise ratio SNR := α/

√
2η for α corresponding to

maxα C(α, η = 0) and η corresponding to the value for which maxα C(α, η) becomes
zero. The smaller is this quantity, the more robust is entanglement. The SNR has
been plotted in Fig. 4 (bottom curve) versus J . The value J = 1 is optimal in the
sense that admits a larger interval of η values for which maxα C(α, η) > 0.

4. Independent Driving Fields

If the driving field is separate for the two systems, then the latter will experience
independent fluctuations. Hence the superoperator N reads (see also Ref. 19):

N [σy
A;σ

y
B]ρ = −η[σy

A, [σ
y
A, ρ]]− η[σy

B , [σ
y
B , ρ]] . (12)

We can then again analytically solve the linear system of equations coming from
the corresponding master equation for the steady state

0 = −ιJ [(σ†
AσB + σAσ

†
B), ρ]− ια[(σy

A + σy
B), ρ]

− η[σy
A, [σ

y
A, ρ]]− η[σy

B , [σ
y
B , ρ]] +D[σA]ρ+D[σB ]ρ , (13)

for a, b1, b2, c1, c2, d1, d2, e, f1, f2, g1, g2, h, i1, i2 (the solution is reported in
Appendix B) and fully characterize the state of the system.

In Fig. 5 we plot as before the concurrence (7) versus the pump strength α and
noise strength η for a fixed nonzero values of J . In this case C is a monotonically
decreasing function of η. Hence, we do not have any stochastic resonance effects, as
matter of fact the quantity (11) is zero everywhere for all values of signal to noise
ratio.
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Fig. 5. Concurrence C(α, η) versus α and η for J = 2.

By comparing Fig. 2 and 5 we may realize that entanglement is less robust in
this case with respect to the previous one. As matter of fact, the maximum value
of concurrence decreases to zero when the signal-to-noise ratio is ≈ 1.8 in contrast
to the previous case where the corresponding ratio was ≈ 1.4. In Fig. 4 (top curve)
we have plotted the quantity SNR versus J . Likewise the previous case the optimal
value is J = 1.

5. Conclusion

We have studied the robustness of entanglement that can be created in the steady
state of a driven spin dimer with an exchange interaction. As a further noise source
we have considered amplitude fluctuations of the driving field. The entanglement
robustness has been characterized by means of a figure of merit accounting for the
signal to noise ratio of the driving field. We have distinguished the case of local
and global fluctuations and showed that in the latter case stochastic resonance like
effects can emerge.

Our results in general are in agreement with similar phenomena that arise in spin
chains from the interplay of dissipative and dephasing noise sources20 and to those
introduced in Ref. 4. In the latter, two dissipating cavity modes interacting with
an atom were driven by thermal noise. However, also in this case the additive noise
besides the local dissipative fluctuations is common to both systems, hence we can
quite generally argue that stochastic resonance effects on entanglement arise from
the interplay of separate and common fluctuations of different kind. Moreover, we
can speculate that nonwhite noise in (4) could lead to more pronounced stochastic
resonance effects and would like to study this in follow up works.

Our analysis could be applied to effective exchange interaction models in dimers
realizable in solid state, ion traps (including those for electrons21), cold atoms and
Cavity QED set ups.
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Appendix A. Solution of Eq. (10)

D = 24α6 + J4(1 + 2η)2(1 + 6η) + 4α4(15 + 82η + 144η2)

+ 2(α+ 2αη)2(21 + 184η + 432η2)

+ (1 + 2η)2(9 + 150η + 880η2 + 2080η3 + 1536η4)

+ 2J2(1 + 6η)(2α4 + (1 + 2η)2(5 + 16η + 8η2)

+α2(5 + 18η + 16η2)) , (A.1)

Da = 6α6 + α4(9 + 66η + 144η2 + J2(1 + 6η))

+ 3η2(1 + 2η)(9 + J4 + 96η + 304η2 + 256η3 + 2J2(5 + 16η + 8η2))

+ 2ηα2(J2(7 + 23η + 24η2) + 3(9 + 63η + 152η2 + 144η3)) , (A.2)

Db1 = 6α5 + α3(9 + 48η + 120η2 + J2(1 + 6η))

+ ηα(1 + 2η)(J2(11 + 12η) + 3(9 + 60η + 64η2)) , (A.3)

Db2 = Jαη(3 − 10α2 + 22η + 32η2 + J2(3 + 6η)) , (A.4)

c1 = b1 , (A.5)

c2 = b2 , (A.6)

Dd1 = α4(6 + 8η) + α2(9 + 48η + 120η2 + 160η3 + J2(1 + 4η + 8η2))

+ η(1 + 2η)(9 + J4 + 96η + 304η2 + 256η3 + 2J2(5 + 16η + 8η2)) , (A.7)

Dd2 = −Jα2(9 + 6α2 + 66η + 96η2 + J2(1 + 6η)) , (A.8)

De = 6α6 + α4(15 + 74η + 144η2 + J2(1 + 6η))

+ η(1 + 5η + 6η2)(9 + J4 + 96η + 304η2 + 256η3

+2J2(5 + 16η + 8η2)) + α2(9 + 102η + 498η2

+1072η3 + 864η4 + J2(1 + 18η + 54η2 + 48η3)) , (A.9)

f1 = d1 , (A.10)

f2 = 0 , (A.11)
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Dg1 = α(9 + 6α4 + 105η + 418η2 + 680η3 + 384η4 + 5α2(3 + 16η + 24η2))

+αJ2(1 + 13η + 34η2 + 24η3 + α2(1 + 6η)) , (A.12)

Dg2 = −Jα(9 + 81η + 206η2 + 160η3 + α2(6 + 22η) + J2(1 + 5η + 6η2)) , (A.13)

h = e , (A.14)

i1 = g1 , (A.15)

i2 = g2 . (A.16)

Appendix B. Solution of Eq. (13)

D = J4(1 + 2η)3(1 + 4η) + (3 + 8η)(1 + 2α2 + 6η + 8η2)2(3 + 2α2 + 10η + 8η2)

+ 2J2(1 + 2η)(α4(2 + 8η) + (1 + 2η)2(5 + 32η + 56η2 + 32η3))

+ 2J2(1 + 2η)α2(5 + 38η + 96η2 + 64η3) , (B.1)

Da = 2α6(3 + 8η) + α4(9 + 66η + 184η2 + 192η3 + J2(1 + 6η + 8η2))

+ η2(1 + 6η + 8η2)(9 + J4 + 72η + 176η2 + 128η3

+2J2(5 + 12η + 8η2)) + 2ηα2(9 + 93η + 352η2 + 592η3

+384η4 + J2(3 + 23η + 48η2 + 32η3)) , (B.2)

Db1 = α(2α4(3 + 8η) + η(1 + 6η + 8η2)(9 + 36η + 32η2 + J2(5 + 4η)))

+α3(9 + 60η + 144η2 + 128η3 + J2(1 + 6η + 8η2)) , (B.3)

Db2 = Jαη(J2(1 + 6η + 8η2)− (3 + 8η)(1 + 2α2 + 6η + 8η2)) , (B.4)

c1 = b1 , (B.5)

c2 = b2 , (B.6)

Dd1 = α2(J2(1 + 2η) + (3 + 8η)(3 + 2α2 + 10η + 8η2)) , (B.7)

Dd2 = −(Jα2(J2(1 + 6η + 8η2) + (3 + 8η)(3 + 2α2 + 14η + 8η2))) , (B.8)

De = 2α6(3 + 8η) + α4(1 + 2η)(15 + 76η + 96η2 + J2(1 + 4η))

+ η(1 + 7η + 14η2 + 8η3)

× (9 + J4 + 72η + 176η2 + 128η3 + 2J2(5 + 12η + 8η2))

+α2(9 + 114η + 570η2 + 1408η3 + 1696η4 + 768η5)

+ J2α2(1 + 18η + 78η2 + 128η3 + 64η4) , (B.9)
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f1 = d1 , (B.10)

f2 = 0 , (B.11)

Dg1 = α(1 + α2 + 5η + 4η2)(J2(1 + 6η + 8η2)

+ (3 + 8η)(3 + 2α2 + 10η + 8η2)) , (B.12)

Dg2 = −J3α(1 + 7η + 14η2 + 8η3)

−α(3 + 8η)(α2(2 + 6η) + 3(1 + 7η + 14η2 + 8η3)) , (B.13)

h = e , (B.14)

i1 = g1 , (B.15)

i2 = g2 . (B.16)
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