
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tmop20

Download by: [NUS National University of Singapore] Date: 05 November 2017, At: 05:11

Journal of Modern Optics

ISSN: 0950-0340 (Print) 1362-3044 (Online) Journal homepage: http://www.tandfonline.com/loi/tmop20

Transfer of a polaritonic qubit through a coupled
cavity array

Sougato Bose , Dimitris G. Angelakis & Daniel Burgarth

To cite this article: Sougato Bose , Dimitris G. Angelakis & Daniel Burgarth (2007) Transfer of a
polaritonic qubit through a coupled cavity array, Journal of Modern Optics, 54:13-15, 2307-2314,
DOI: 10.1080/09500340701515120

To link to this article:  http://dx.doi.org/10.1080/09500340701515120

Published online: 01 Dec 2010.

Submit your article to this journal 

Article views: 76

View related articles 

Citing articles: 29 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=tmop20
http://www.tandfonline.com/loi/tmop20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09500340701515120
http://dx.doi.org/10.1080/09500340701515120
http://www.tandfonline.com/action/authorSubmission?journalCode=tmop20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tmop20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/09500340701515120
http://www.tandfonline.com/doi/mlt/10.1080/09500340701515120
http://www.tandfonline.com/doi/citedby/10.1080/09500340701515120#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/09500340701515120#tabModule


Journal of Modern Optics
Vol. 54, Nos. 13–15, 10 Sep–15 Oct 2007, 2307–2314

Transfer of a polaritonic qubit through a coupled cavity array

SOUGATO BOSE*y, DIMITRIS G. ANGELAKISz
and DANIEL BURGARTHyx

yDepartment of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, UK

zCentre for Quantum Computation, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, UK

xComputer Science Departement, ETH Zürich, CH-8092,
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We demonstrate a scheme for quantum communication between the ends of an
array of coupled cavities. Each cavity is doped with a single two level system
(atoms or quantum dots) and the detuning of the atomic level spacing and
photonic frequency is appropriately tuned to achieve photon blockade in the
array. We show that in such a regime, the array can simulate a dual rail quantum
state transfer protocol where the arrival of quantum information at the receiving
cavity is heralded through a fluorescence measurement. Communication is also
possible between any pair of cavities of a network of connected cavities.

1. Introduction

Recently, the exciting possibility of coupling high Q cavities directly with each other
has materialized in a variety of settings, namely fibre coupled micro-toroidal cavities
[1], arrays of defects in photonic band gap materials (PBGs) [2, 3] and microwave
stripline resonators joined to each other [4]. A further exciting development has been
the ability to couple each such cavity to a quantum two-level system which could
be atoms for micro-toroid cavities, quantum dots for defects in PBGs or
superconducting qubits for microwave stripline resonators [5]. Possibilities with
such systems are enormous and include the implementation for optical quantum
computing [6], the production of entangled photons [7], the realization of Mott
insulating and superfluid phases [8–10] and spin chains [8]. Such settings can also be
used to verify the possibilities of distributed quantum computation involving atoms
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coupled to distinct cavities [11] and also to generate cluster states for efficient
measurement based quantum computing schemes [12].

When the coupling between the cavity field and the two-level system (which
we will just call atom henceforth, noting that they need not necessarily be only
atoms) is very strong (in the so-called strong coupling regime), each cavity–atom
unit behaves as a quantum system whose excitations are combined atom–field
excitations called polaritons. The nonlinearity induced by this coupling or as
it is otherwise known, the photon blockade effect [13], forces the system to
a state where maximum one excitation (polariton) per site is allowed. However,
a superposition of two different polaritons, which is equivalent to a superposition
of two energy levels of the cavity–atom system, is indeed allowed and naturally
the question arises as to whether that can be used as a qubit. Purely atomic
qubits (formed from purely atomic energy levels) in cavities have long been
discussed in the literature (see references cited in [11], for example), but such
qubits in distinct cavities do not directly interact with each other unless
mediated through light. On the other hand, a purely photonic field in a cavity
is not easy to manipulate in the sense of one being able to create arbitrary
superpositions of its states by an external laser. Being a mixed excitation, polaritons
interact with each other as well as permit easy manipulations with external lasers
in much the same manner as one would manipulate and superpose atomic
energy levels. Is there any interesting form of quantum information processing
that can be performed by encoding the quantum information in a superposition
of polaritonic states? While an ultimate aim might be to accomplish quantum
computation with polaritonic qubits, we concentrate here on a more modest aim
of transferring the state of a qubit encoded in polaritonic states (a polaritonic qubit)
from one end of the coupled cavity array to another. This will be a step
towards developing further quantum information processing schemes with
polaritonic qubits.

2. System

Assume a chain of N coupled cavities. We will describe the system dynamics using
the operators corresponding to the localized eigenmodes (Wannier functions), aykðakÞ.
The Hamiltonian is given by

H ¼
XN

k¼1

!da
y
kak þ

XN

k¼1

Aðaykakþ1 þH:C:Þ ð1Þ

and corresponds to a series of quantum harmonic oscillators coupled through
hopping photons. The photon frequency and hopping rate is !d and A respectively
and no nonlinearity is present yet. Assume now that the cavities are doped with
two-level systems (atoms/quantum dots/superconducting qubits) and jgik and jeik
their ground and excited states at site k. The Hamiltonian describing the system is the
sum of three terms: H free the Hamiltonian for the free light and dopant parts, H int
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the Hamiltonian describing the internal coupling of the photon and dopant in a
specific cavity and Hhop for the light hopping between cavities.

Hfree ¼ !d

XN

k¼1

aykak þ !0

X

k

jeikhejk; ð2Þ

Hint ¼ g
XN

k¼1

aykjgikhejk þH:C:
! "

; ð3Þ

Hhop ¼ A
XN

k¼1

aykakþ1 þH:C:
! "

; ð4Þ

where g is the light atom coupling strength. The HfreeþHint part of the Hamiltonian
can be diagonalized in a basis of mixed photonic and atomic excitations, called
polaritons (figure 1). While jg; 0ik is the ground state of each atom cavity system,
the excited eigenstates of the kth cavity–atom system are given by
jn%ik ¼ ðjg; nik % je; n& 1ikÞ=21=2 with energies E%

n ¼ n!d % gn1=2. One can then
define polariton creation operators Pð%;nÞy

k by the action Pð%;nÞy
k jg; 0ik ¼ jn%ik. As we

have proved elsewhere, due to the blockade effect, once a site is excited to j1&i or
j1þi, no further excitation is possible [8]. In simplified terms, this is because it costs
more energy to add another excitation in an already filled site so the system prefers
to deposit it if possible to a nearby empty site. This effect has recently led to the

Figure 1. A series of coupled cavities coupled through light and the polaritonic
energy levels for two neighbouring cavities. These polaritons involve an equal mixture
of photonic and atomic excitations and are defined by creation operators
Pð%;nÞy
k ¼ ðjg; nikhg; 0jk % je; n& 1ikhg; 0jkÞ=21=2, where jnik; jn& 1ik and j0ik denote n, n&1

and 0 photon Fock states in the kth cavity. The polaritons of the kth atom–cavity system
are denoted as jn%ik and given by jn%ik ¼ ðjg; nik % je; n& 1ikÞ=21=2 with energies
E%
n ¼ n!d % gn1=2. (The colour version of this figure is included in the online version of

the journal.)
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prediction of a Mott phase for polaritons in coupled cavity systems [8]. If we restrict
to the low energy dynamics of the system such that states with n > 1 are not
occupied, which can be ensured through appropriate initial conditions, the
Hamiltonian becomes (in the interaction picture):

HI ¼ A
XN

k¼1

Pð&Þy
k Pð&Þ

kþ1 þ A
XN

k¼1

PðþÞy
k PðþÞ

kþ1 þH:C:; ð5Þ

where Pð%Þy
k ¼ Pð%;1Þy

k is the polaritonic operator creating excitations to the first
polaritonic manifold (figure 1). In deriving the above, the logic is that the terms of
the type Pð&Þy

k PðþÞ
kþ1, which inter-convert between polaritons, are fast rotating and they

vanish [8].

3. Protocol

We are now in a position to outline the basic idea behind the protocol. A qubit
is encoded as a superposition of the polaritonic states j1þi and j1&i in the first
cavity. The multi-cavity system is then allowed to evolve according to HI. At the
receiving cavity at the other end we then do a measurement inspired by a dual rail
quantum state transfer protocol [14] which heralds the perfect reception of the qubit
for one outcome of the measurement, while for the other outcome of the
measurement the process is simply to be repeated once more after a time delay.
Before presenting the scheme in detail, let us first present a special set of initial
conditions under which HI describes the dynamics of two identical parallel
uncoupled spin chains.

Suppose we are restricting our attention to a dynamics in which the initial state
is obtained by the action of only one of the operators among PðþÞy

k and Pð&Þy
k

on the state
Q

k jg; 0ik which has all the sites in the state jg; 0i. As Pð&Þy
k does not act

after PðþÞy
k has acted and vice versa, under the above restricted initial conditions,

the system is going to evolve only according to one of the terms in equation (5),
i.e. only according to the first or the second term. To be more precise, if we start with
a state PðþÞy

j

Q
k jg; 0ik only the term A

PN
k¼1 P

ðþÞy
k PðþÞ

kþ1 is going to be active and cause
the time evolution, while if we start with the state Pð&Þy

j

Q
k jg; 0ik only the term

A
PN

k¼1 P
ð&Þy
k Pð&Þ

kþ1 will be responsible for the time evolution. Each of the operators
PðþÞy
k and Pð&Þy

k individually have the same algebra as the Pauli operator
!þ
k ¼ !x

k þ i!y
k, which makes both the parts of the Hamiltonian individually

equivalent to a XY spin chain with a Hamiltonian HXY ¼ A
P

kð!x
k!

x
kþ1 þ !y

k!
y
kþ1Þ.

The restricted set of initial states mentioned above can be mapped on to those of two
parallel chains of spins labelled as chain I and chain II respectively. Let j0i and j1i
be spin-up and spin-down states of a spin along the z direction, j0iðIÞj0iðIIÞ be a
state with all spins of both chains being in the state j0i, jkiðIÞj0iðIIÞ represent the
state obtained from j0iðIÞj0iðIIÞ by flipping only the kth spin of chain I and j0iðIÞjkiðIIÞ
represents the state obtained from j0iðIÞj0iðIIÞ by flipping only the kth spin of chain II.

2310 S. Bose et al.
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Then, the restricted class of initial conditions for polaritonic states can be mapped on
to states of the parallel spin chains as

jg; 0i1jg; 0i2 ' ' ' jg; 0iN ! j0iðIÞj0iðIIÞ; ð6Þ

jg; 0i1 ' ' ' jg; 0ik&1j1þikjg; 0ikþ1 ' ' ' jg; 0iN ! jkiðIÞj0iðIIÞ; ð7Þ

jg; 0i1 ' ' ' jg; 0ik&1j1&ikjg; 0ikþ1 ' ' ' jg; 0iN ! j0iðIÞjkiðIIÞ: ð8Þ

Under the above mapping and under the above restrictions on state space,
HI becomes equivalent to the Hamiltonian of two identical parallel XY spin
chains completely decoupled from each other. Precisely such a Hamiltonian is
known to permit a heralded perfect quantum state transfer from one end of a pair of
parallel spin chains to the other [14], and we discuss that below.

Spin chains are capable of transmitting quantum states by natural time evolution
[15]. However it is well known that due to the dispersion on the chain [16] the
fidelity of transfer is quite low except for specific engineered couplings in the
spin chains [17, 18] or when the receiver has access to a significant memory [19].
The advantage of the polariton system is that we have two parallel and
identical chains. We have recently shown how this can be made use of in a dual
rail protocol [14]. The main idea of this protocol is to encode the state in a symmetric
way on both chains. The sender Alice encodes a qubit "j0iþ #j1i to be
transmitted as

jUð0Þi ¼ "j0iðIÞj1iðIIÞ þ #j1iðIÞj0iðIIÞ; ð9Þ

which evolves with time as

jUðtÞi ¼
XN

j¼1

f1jðtÞð"j0iðIÞjjiðIIÞ þ #jjiðIÞj0iðIIÞÞ; ð10Þ

where f1j is the transition amplitude of a spin flip from the 1st to the jth site of a
chain. Clearly, if after waiting a while Bob performs a joint parity measurement on
the two spins at his (receiving) end of the chain and the parity is found to be ‘odd’,
then the state of the whole system will be projected to "j0iðIÞjNiðIIÞ þ #jNiðIÞj0iðIIÞ,
which implies the perfect reception of Alice’s state (albeit encoded in two qubits
now). The protocol presented in [14] in fact suggested the use of a two qubit quantum
gate at Bob’s end which measured both the parity as well as mapped the state to a
single qubit state. However, here the presentation as above suffices for what follows.
Physically, this protocol, which is called the dual rail protocol, allows one to perform
measurements on the chain that monitors the location of the quantum information
without perturbing it. As such it can also be used for arbitrary graphs of spins (as long
as there are two identical parallel graphs) with the receiver at any node of the graph.
Furthermore, for the Hamiltonian at hand (XY spin model) it is known [20] that the
probability of success converges exponentially fast to one if the receiver performs
regular measurements. The time it takes to reach a transfer fidelity F scales as

t ¼ 0:33A&1N5=3j ln ð1& FÞj : ð11Þ

Transfer of a polaritonic qubit through a coupled cavity array 2311
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The difference between our current coupled cavity system and the spin chain system
considered in [14] is that in our case, the two chains are effectively realized in one
system. Therefore, it is not necessary to perform a two-qubit measurement such as a
parity measurement at the receiving ends of the chain. The qubit to be transferred is
encoded as "

0 j1þi1 þ #
0 j1&i1 ( "je; 0i1 þ #jg; 1i1. This state can be created by the

sender Alice using a resonant Jaynes–Cummings interaction between the atom and
the cavity field. Then the whole evolution will exactly be as in equation (10) with
the spin chain states having to be replaced by polaritonic states according to the
mapping given in equations (6)–(8). The measurement to herald the arrival of the
state at the receiving end is accomplished by exciting (shelving) jg; 0i repeatedly to a
metastable state by an appropriate laser (which does not do anything if the atom is
either in j1%i). The fluorescence emitted on decay of the atom from this metastable
state to jg; 0i implies that another measurement has to be done after waiting a while.
No fluorescence implies success and completion of the perfect transfer of the
polaritonic qubit. Interestingly enough, the measurement at the receiving cavity need
not be snapshot measurements at regular time intervals, but can also be continuous
measurements under which the scheme can have very similar behaviour to the
case with snapshot measurements for appropriate strength of the continuous
measurement process [21].

We now briefly discuss the parameter regime needed for the scheme of this paper.
In order to achieve the required limit of no more than one excitation per site,
the parameters should have the following values [8]. The ratio between the
internal atom–photon coupling and the hopping of photons down the chain should
be g/A=102. We should be on resonance, D ¼ 0, and the cavity/atomic frequencies
!d,!0) 104g which means we should be well in the strong coupling regime. The
losses should also be small, g/max($,%)) 103, where $ and % are cavity and atom/
other qubit decay rates. These values are expected to be feasible in both toroidal
microcavity systems with atoms and stripline microwave resonators coupled to
superconducting qubits [5], so that the above states are essentially unaffected by
decay for a time 10/A (10 ns for the toroidal case and 100 ns for microwave stripline
resonator-type implementations).

4. Conclusions

We conclude with a brief discussion about the positive features of the scheme and
situations in which the scheme might be practically relevant. The scheme combines
the best aspects of both atomic and photonic qubits as far as communication is
concerned. The atomic content of the polaritonic state enables the manipulation to
create the initial state and measure the received state of the cavity–atom systems with
external laser fields, while the photonic component enables its hopping from cavity
to cavity thereby enabling transfer. Unlike quantum communication schemes where
an atomic qubit first has to be mapped to the photonic state in the transmitting
cavity and be mapped back to an atomic state in the receiving cavity by external

2312 S. Bose et al.
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lasers, here the polaritonic qubit simply has to be created. Once created, it will hop
by itself though the array of cavities without the need for further external control or
manipulation.
In what situations might such a scheme have some practical utility? One case is when
Alice ‘knows’ the quantum state she has to transmit to Bob. She can easily prepare it
as a polaritonic state in her cavity and then let Bob receive it through the natural
hopping of the polaritons. Another situation is when a multiple number of cavities
are connected with each other through an arbitrary graph. The protocol of [14] still
works fine in this situation with Alice’s qubit being receivable in any of the cavities
simply by doing the receiving fluorescence measurements in that cavity.
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