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We show how coupled cavities can be used to produce high-dimensional entangled states of electromagnetic
fields. We also show how such an entangled state can be verified by mapping the entangled fields to atoms or
quantum dots in the defects. We propose this as a source of high dimensional entangled states on demand and
suggest ways to implement it using coupled defects in photonic crystals or coupled toroidal microcavities.
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1. INTRODUCTION
Shared entanglement between distant parties is a very
important concept for quantum information processing
(QIP).1,2 Entangled optical fields are highly suited for this
purpose, and light is very effective for long-distance com-
munication. Usually either parametric downconversion
producing polarization entangled photons3,4 or continuous
variable (CV) entanglement using interference of
squeezed states5 is used as sources of entanglement in
QIP. While CV entanglement can be high dimensional,
discrete variable entanglement so far has mostly been
that between two two-state systems (or a single ebit3,4). A
notable exception is the higher dimensional entangled
states recently studied by Howell et al.,6 which is equiva-
lent to the entanglement between two three-level sys-
tems. This is related to earlier theoretical work by
Drummond7 and Reid et al.8 In this paper, we show how
entanglement equivalent to that between two three-level
systems and two four-level systems can be created using
coupled cavities for electromagnetic fields. We also show
how dopants such as atoms or quantum dots in these cavi-
ties can be used to both prepare the initial state needed
for generating this entanglement and probe the final en-
tangled state. We conclude by discussing the possibility of
implementing these ideas using either defects in photonic
bandgap materials or toroidal microcavities coupled via
tapered optical fibers. This is motivated by the recent
availability of high-Q cavities near the strong coupling re-
gime that in addition can be strongly and efficiently
coupled to each other.9–14 If one seeks very preliminary
applications of such systems in quantum information,
then the proposal of our paper comes across as one of the
simplest possible of such applications.

2. SYSTEM
We consider the system depicted in Fig. 1 with two
coupled cavities. Let a and b be the field operators for the
photonic modes in each defect. The Hamiltonian describ-
ing the hopping of photons from one cavity to another in
such a system of two neighboring cavities is

H = a†b + ab†. !1"

This coupling is strongest when modes a and b are reso-
nant to each other. As we will assume this to be the case
whenever the Hamiltonian H is used, we ignore the en-
ergy terms !a†a+b†b of the two modes.

We also assume that each cavity is doped with a mul-
tilevel system (atom or quantum dot) of level configura-
tion, as shown in the lower part of Fig. 1. The dopant in
the defect with mode a is labeled A and the the dopant in
the defect with mode b is labeled B. They are assumed to
have a set of lower Zeeman levels (labeled #gi$ i=0, . . . ,N)
and a set of higher Zeeman levels (labeled #ei$ i=0, . . . ,N
−1). The case for N=3 with atoms as dopants is shown in
Fig. 1. In the context of cavity QED it has been shown15

that adiabatic passage enables the following back and
forth mapping of internal states of such atoms to Fock
states in cavities in which they are trapped:

#gr$#n$ ↔ #gr−k$#n + k$. !2"

Using these dopants, the cavities are first prepared in
Fock states #k$a#k$b [one simply starts the dopants in the
state #gk$A#gk$B—the cavities empty, i.e., in state
#0$a#0$b—and performs the mapping of Eq. (4)]. We as-
sume that during this mapping the influence of H can be
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neglected using external fields at detuning the two de-
fects from resonance.

3. EVOLUTION AND ENTANGLEMENT
We first consider the case of k=1, or in terms of operators,
the initial state to be a†b†#0$. The time evolution of the
system when the Hamiltonian H acts on it can be found
out by the following evolution of the operators:

a† → a† cos t + ib† sin t,

b† → b† cos t + ia† sin t. !3"

The above leads to the following state of the two modes in
time:

#"!t"$ab = cos t#1$a#1$b + i
sin t

%2
!#2$a#0$b + #0$a#2$b". !4"

Thus at time t=tan−1%2, the state !1/%3"!#1$a#1$b
+ #2$a#0$b+ #0$a#2$b" is obtained. This is equivalent to a
maximally entangled state of two spin-1 systems. How-
ever, entanglement of two spin-1 systems using optical
modes has already been seen in Ref. 6 albeit in a polar-
ization and photon number combined setting. Thus the
entangled state obtained with the initial state k=1 is not

a significant advance over available entangled states.
We now examine the case when we start with initial

state k=2. Equation (4) can still be used to compute the
time evolution of the initial state a†2

b†2
#0$, but we have

also computed the evolution fully numerically to check
that this procedure gives the right answer. The numerical
results give the following general state of the two modes
as a function of time:

##!t"$ab = c22#2$a#2$b + c31#3$a#1$b + c13#1$a#3$b + c40#4$a#0$b

+ c04#0$a#4$b, !5"

where the amplitudes cij vary with time, as given in Fig.
2. According to Eq. (4) the state is given by

##!t"$ab = !1/2"&2'1 −
3 sin2 2t

2 (#2$a#2$b

−
%6 sin2 2t

2
!#4$a#0$b + #0$a#4$b"

+ i%6 sin 2t cos 2t!#1$a#3$b + #3$a#1$b") , !6"

which is in complete agreement with the numerics. From
Fig. 2 note a special point at which c22 completely van-
ishes. At this point the state has a particularly simple
form (obtainable by setting sin2 2t=2/3) given by

##E$ab =
1

%3
!#3$a#1$b + #1$a#3$b" +

1

%6
#4$a#0$b + c04#0$a#4$b.

!7"

The Schmidt form of the above state immediately sug-
gests that it is equivalent to an entangled state to two
spin-3/2 (or two four-level) systems. But how entangled is
it? One can compute the entanglement of this state from
the von Neumann entropy of the reduced density matrix
of either of the modes given by S=−Tr$a log $a=
−*i#ci#2log#ci#2. It is found to be 1.9183 ebits. Given that
two four-level systems can have 2 ebits of entanglement

Fig. 1. (Color online) Coupled doped cavities in PBG crystals.
The cavities support modes a and b of light of the same fre-
quency. These modes are coupled owing to hopping of photons be-
tween the cavities. The cavities are doped with dopants A and B,
whose level configuration is shown in the bottom of the diagram.
Mappings of the form #gk$#0$↔ #g0$#k$ are possible through the ap-
plication of external fields using adiabatic passage techniques
(Ref. 15).

Fig. 2. (Color online) Time dependence of the amplitudes as-
suming initially the system was at #2$a#2$b.
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at most, the state ##E$ab is indeed a highly entangled state
of such systems.

4. VERIFICATION
To detect the generated entangled states such as ##E$ab,
we again resort to the multilevel dopants that dope the
cavities and use the mapping of Eq. (4). It is assumed that
the mapping takes place at a much faster time scale than
the coupling between the cavities, and thus H has no ef-
fect on this mapping. The mapping transforms the en-
tangled state of the modes a and b to the following en-
tangled states of dopants:

c22#2$a#2$b + c31#3$a#1$b + c13#1$a#3$b + c40#4$a#0$b

+ c04#0$a#4$b→ !8"

c22#g2$A#g2$B + c31#g3$A#g1$B + c13#g1$A#g3$B + c40#g4$A#g0$B

+ c04#g0$A#g4$B. !9"

The amount of entanglement between the two dopants
can be subsequently evaluated by performing a Bell in-
equality test for a bipartite system of high dimensionality
such as the ones proposed in Refs. 16 and 17. In our case,
as the required measurements will be performed on
atomic states by external lasers, shelving, and fluores-
cence, rather than on photons with much higher detection
efficiencies, high accuracy is expected in detecting the
high dimension of entanglement.

5. IMPLEMENTATION
We now discuss how the proposed entanglement genera-
tion can be relevant to certain physical systems. A system
of coupled high-Q cavities is essentially required. The
cavity-field decay rate % is required to be much smaller
than the coupling strength A between two defects (A
would be the term multiplying a†b+ab† in the Hamil-
tonian). This is required so that there is virtually no de-
cay from the cavities during the evolution of the en-
tangled state from the initial Fock states, and the
assumption of treating this evolution entirely unitarily is
valid. One recent implementation, namely, toroidal micro-
cavities coupled by tapered fibers, currently have A a few
times (about 2.5 times) %. Here we have estimated A from
the difference in the quality factor of a fiber loaded cavity
and the intrinsic quality factor of the same cavity. We
note that as the intrinsic Q factors of these cavities are
expected to be increased nearly fourfold in the near future
to reach 4&108, A is expected to be about 1 order of mag-
nitude greater than %, which should suffice for our analy-
sis to be valid.9 In these cavities, the atom-field coupling
strength g, which sets the time scale of the mapping of
states from the cavity fields to the atomic levels, is about
40 times greater than the current values to % (and conse-
quently about 1 order of magnitude greater than A). Thus
the mapping of the entangled electromagnetic field states
to those of the atoms can be accomplished in a time scale
much faster than both the evolution of these states due to
the coupling of the cavities and any decay of these states
due to cavity decay. The fact that atoms with the requisite

level configuration for our scheme (many Zeeman levels)
is possible and can be used for cavity QED is stated in
Ref. 15. The Zeeman levels have virtually infinite lifetime
in comparison to the time-scale of the dynamics of our
problem. In the case of toroidal microcavities in chips, the
technology of trapping atoms is also currently available,18

which can be made to interact with the evanescent cavity
fields.

An alternative interesting scenario for the implementa-
tion of our protocol can be photonic crystals (PCs). Photo-
nic crystals or photonic bandgap materials (PBGs) are or-
dered artificial dielectrics.19–21 The periodicity in the
refractive index allows them to tailor the flow of light and,
in some cases completely inhibit it, creating bandgaps in
three dimensions. The introduction of line defects in an
otherwise ordered crystal gives rise to allowed modes
within the bandgap, where guided light can propagate
with very low losses. Point defects can also be introduced
leading to localized modes of light acting as very high Q
cavities,21 whereas chains with large number of defects
have been predicted to allow efficient waveguiding
through a hopping mechanism and fabricated
experimentally.22,23

PBG defect cavities can also be doped with discrete
level systems (atoms or a quantum dot)10 that are a re-
quirement for our protocol. More importantly, the dopant
can be controlled by external lasers and can couple
strongly to the optical modes in the high-Q cavities. In
this strong coupling regime, the cavity field-atom cou-
pling g can be as strong as 105 MHz and about 3.9 times
larger than %, which suffices for our purpose.9 The cou-
pling A between PBG cavities can be as high as terahertz
(in Ref. 14), and the coupling between traveling mode
waveguides and a defect cavity is given—one should be
able to make the coupling between two cavities to be of
the same order of magnitude). We require a lower A (so
that g'A, for the validity of our analysis), and this
should be possible by separating the defect cavities by a
longer distance in the crystal. Moreover, one should be
able to probe the internal states of the dopants by the
usual shelving techniques. In other recent studies,24–26

another set of feasible parameters for coupled cavities in
PCs in the strong coupling !g'%" regime as required
here, as well as g'A is discussed. In these studies the
possibility to dope the PBG cavities with two-level atoms
or other qubits (such as nitrogen vacancy centers in dia-
mond) is examined.

6. CONCLUSION
We show that high-dimensional entanglement using elec-
tromagnetic fields (equivalent to the maximal entangle-
ment of two spin-1 systems and highly entangled state of
two spin-3

2 systems) can be prepared using coupled cavi-
ties. We have provided two examples of physical imple-
mentations of such a scheme, one using coupled toroidal
microcavities and the other using coupled defect cavities
in PBG crystals. If these states can be leaked out of the
cavities and transmitted to long distances, one can have a
shared high-dimensional entanglement between distant
parties. We note here that Q switching individual PBG
cavities and coupling them to a waveguide has already
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been discussed in Ref. 26, and similar ideas should be ap-
plicable to toroidal cavities as well. Atoms or dopants in
the cavities both create the initial states required for en-
tanglement generation, as well as serve as systems on
which the entangled state can be mapped for detection. To
keep the complexity of the scheme to a modest level (both
in terms of initial state preparation and entangled state
verification), we have just used initial states #1$a#1$b and
#2$a#2$b. However, in the future one could study the cases
of starting with higher Fock states in the cavities. In the
context of higher Fock states in cavities and entangle-
ment generation from them, one is automatically also
testing the bosonic nature of the photons, in much the
same sense as their bunching in a 50–50 beam splitter
tests bosonic statistics. This is an additional motivation
for this work, as statistical experiments have yet to be
performed with multiphoton Fock states incident on beam
splitters (the coupling between the cavities in our scheme
effectively simulates a beam splitter).
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