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Photonic crystals and inhibition of spontaneous emission: an
introduction

D. G. ANGELAKIS, P. L. KNIGHT and E. PASPALAKIS

In the first part of this introductory review we outline the developments in photonic band gap
materials from the physics of photonic band gap formation to the fabrication and potential
applications of photonic crystals. We briefly describe the analogies between electron and
photon localization, present a simple model of a band structure calculation and describe
some of the techniques used for fabricating photonic crystals. Also some applications in the
field of photonics and optical circuitry are briefly presented. In the second part, we discuss
the consequences for the interaction between an atom and the light field when the former is
embedded in photonic crystals of a specific type, exhibiting a specific form of a gap in the
density of states. We first briefly review the standard treatment (Weisskopf –Wigner
theory) in describing the dynamics of spontaneous emission in free space from first
principles, and then proceed by explaining the alterations needed to properly treat the case
of a two-level atom embedded in a photonic band gap material.

1. Introduction

At the microscopic level, ordinary matter exhibits beha-
viour analogous to light waves. When wave-like electrons
scatter off ions in crystalline materials, constructive
interference between different trajectories can cause electric
currents to flow. Conversely, disorder in such crystals can
hinder electrical conductivity, and for some energies the
electrons become localized in space, thus preventing their
free flow in the form of electrical currents . Although such
ideas have been known since the 1960s, it is only recently
that physicists have begun to ask whether similar effects can
result in the localization of light in a corresponding
‘photonic crystal’.

The purpose of this article is twofold. In the first part we
outline the developments in photonic band gap (PBG)
materials from the physics of photonic band gap formation
to the fabrication and potential applications of photonic
crystals. In the latter, we specifically focus on the state-of-
the-art 3D structures exhibiting a full band gap in their

electromagnetic field density of states, because as we believe,
these are of great technological and fundamental interest. In
the second part, we discuss the consequences for the
interaction between an atom and the light field when the
former is embedded in dielectric materials, mostly photonic
crystals, which exhibit gaps in the density of states. We first
review the standard treatment to describe the dynamics of
spontaneous emission in free space and proceed by
explaining the alterations needed to properly illustrate the
dynamics of two-level systems embedded in a PBGmaterial.

2. Developments in photonic crystals

2.1. From electrons to photons

A normal crystal is a periodic array of atoms which scatters
and modifies the energy momentum relation of electrons,
whereas a photonic crystal is an ordered inhomogeneous
medium characterized by a spatially periodic dielectric
constant, with the lattice parameter comparable to the
wavelength of the light [1]. Figure 1 shows one such
microstructure in which a complete bandgap at 1.5 mm has
been observed.

Strictly speaking, such a structure has no allowed electro-
magnetic (EM) modes in the forbidden range of frequencies
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or in other words the density of states (DOS) of the
propagating photon modes is zero (see figures 2 and 3). By
contrast in free space (a cavity of infinite volume) the density
of modes varies as o2 and exhibits no gap. In a cavity of
finite volume the density of states is substantially modified
for frequencies close to the cavity cut-off. Below the cut-off
the cavity sustains no modes at all, and just above the cut-
off, the density of states can be increased to the continuum
case. The vanishing of the density of propagating photon
modes within a PBG means that, for the frequency range
spanned by the gap, linear propagation of electromagnetic
(EM) waves is forbidden in any direction in the PBG
material. Thus, light incident on a PBG material with a
frequency from the gap region will be backscattered from
the material, independent of the angle of incidence. Strong
suppression of transmission with an associated peak in the
reflectivity at the characteristic frequencies is then an
experimental signature of a photonic band gap [2].

To give a further insight on the physics of light
localization we will exploit the analogy between electron
and light a bit further. As is well known an electron in a
disordered solid is described by the following Schrödinger
equation:

! !h2

2m" r
2cðxÞ þ VðxÞcðxÞ ¼ EcðxÞ ; ð1Þ

where m* is the electron’s effective mass and V(x) is a
potential that varies randomly in space. For sufficiently
negative energies E, the electrons may become trapped in
regions where the random potential is very deep. The rate
at which electrons tunnel out of the deep potentials depends
on the probability of finding nearby potential fluctuations
into which the trapped electron can tunnel. This rate
increases as the electron energy increases.

In the case of a monochromatic EM wave of frequency o
propagating in an inhomogeneous but non-dissipative
dielectric medium, the classical wave equation for the
electric field is

!r2Eþ 1

c2
@E2

@t2
¼ m0

@P2

@t2
; ð2Þ

Figure 1. A 3D silicon photonic crystal exhibiting a complete
band gap for incident light at 1.5 mm. It is constructed by
growing silicon inside the voids of an opal template of close-
packed silica spheres which are connected by the small ‘necks’
formed during sintering, followed by removal of the silica
template—see section 2 (courtesy of S. John’s group, University
of Toronto).
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Figure 2. The density of modes of the EM field in free space.

Figure 3. The density of modes of the EM field in a PBG
structure with a broad gap.
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where P is the polarization of the medium. Assuming now
propagation in a linear medium, this leads to

!r2E ! o2

c2
efluctðxÞE ¼ eD

o2

c2
E ; ð3Þ

where E is the slowing varying field amplitude. Also the total
dielectric constanthasbeenseparated into itsaveragevalue eD
and a spatially fluctuating part efluct(x). In a lossless material
the dielectric constant e(x) is everywhere real and positive1

andplays a roleanalogous to the randompotentialV(x) in the
Schrödinger equation (see figure 4). It scatters the EMwave.
Comparing now the above two equations (1) and (3) we
observe the following differences. First, the quantity eD(o2/
c2) which plays the role of an energy eigenvalue, is always
positive, which precludes the possibility of elementary
bound states of light in deep negative potential wells.

Secondly the mode frequency o multiplies the scattering
potential efluct(x) and in contrast to an electronic system,
where localization is increased by lowering the electron
energy, lowering the photon energy leads to a complete
disappearance of scattering. In addition, looking at the
opposite high-frequency limit, geometric ray optics be-
comes valid and interference corrections to optical trans-
port becomes less and less effective. These simply mean that
in both cases the normal modes of the EM field are
extended, not localized. Finally, the condition that eD+ e-
fluct4 0 everywhere translates into the requirement that the
energy eigenvalue will always be greater than the effective
potential j(o2/c2)efluct(x)j. Therefore, unlike the familiar
picture of electronic localization, what we are really seeking
is an intermediate frequency window within the positive
energy continuum that lies at an energy higher than the
highest of the potential barriers. For those frequencies the
interference between the incident and the scattered EM
waves will be exactly destructive and this will allow no free
propagating photon modes to exist in the structure [3].

In the following section, we quantify these ideas in a
more rigorous way and present the procedure followed to
find the allowed modes as a function of the frequency, the
dispersion relation, in a simple 1D periodic dielectric.

2.2. Calculating the dispersion relation

The dielectric constant of any photonic crystal can be
expressed as

eðxÞ ¼ eD þ efluctðxÞ : ð4Þ

In this case we will assume that our structure exhibits
periodicity in one dimension and is homogenous in the
other two. More specifically

efluctðxÞ ¼
Xþ1

n¼!1
uðx! nLÞ ; ð5Þ

with L being the lattice constant and

uðxÞ ¼ n2 ! 1; jxj < a;
0; otherwise

!
: ð6Þ

As discussed in the previous section, the propagation of a
monochromatic EM field in an inhomogeneous, non-
dissipative dielectric medium is governed by the following
equation

!r2E þrðr ' EÞ ! o2

c2
efluctðxÞE ¼ eD

o2

c2
E ; ð7Þ

where E is the field’s ampitude. Setting eD=1, the above
equation reads (r' E ¼ 0, free charge is zero)

Figure 4. The scattering potential for electrons in a solid (top
figure) and for photons in a random dielectric medium (bottom)
[3]. The effective scattering potential for photons is (o2/c2)efluct,
where efluct is the spatially varying part of the dielectric. The
electron (top) can have a negative energy and can be trapped in
deep potentials. In contrast, the eigenvalue (o2/c2)eD of the
photon (bottom) must be greater than the highest of the potential
barriers if the dielectric constant is to be real and positive
everywhere.

1All the dielectric materials described in this article will be assumed to be
completely lossless.
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!r2EðxÞ ! o2

c2
efluctðxÞEðxÞ ¼

o2

c2
EðxÞ : ð8Þ

Setting F(x)=– (o2/c2)efluct(x) we obtain

!r2EðxÞ þ FðxÞEðxÞ ¼ o2

c2
EðxÞ ; ð9Þ

where the potential F(x) is basically a sequence of
‘potential barriers’ of width 2a (see figure 5). The objective
is to solve equation (9) for the potential F(x).

Restricting ourselves to a unit cell of the crystal, the
solution can be expressed as follows

EðxÞ ¼
A exp ðikxÞ þ B!ikx; x < !a;

C exp ðik0xÞ þD exp ð!ik0xÞ; jxj < a;
E exp ðikxÞ þ Fe!ikx; x > a;

8
<

: ð10Þ

where k=o/c and k’= no/c. According to the Floquet
theorem, E(x) should obey the following equation

Eðxþ LÞ ¼ exp ðikLÞEðxÞ ; ð11Þ

and the derivative

d Eðxþ LÞ
dx

¼ exp ðikLÞ d EðxÞ
dx

: ð12Þ

In addition the boundary conditions are that both e(x) and
de(x)/dx should be continuous at x=+ a. Applying all
these conditions, we calculate the expansion coefficients
and also the following transcendental equation describing
the relation between o and k:

cos ðkLÞ ¼ cos
2nao
c

" #
cos

bo
c

" #

! n2 þ 1

2n
sin

2nao
c

" #
sin

bo
c

" #
;

ð13Þ

which for b=2na can be inverted analytically providing
the dispersion relation for the 1D crystal,

ok ¼
c

4na
arccos

4n cos ðkLÞ þ ð1! n2Þ
ð1þ nÞ2

" #

: ð14Þ

This dispersion relation leads to gaps at k=(mp)/
[2(n+1)a] for odd integer values of m (see figure 6). The

lowest gap is centred at the frequency ogap= pc/(4na)
which for the case b=2na equals p/L (case shown figure 5).

In the more general case of a realistic 3D photonic
crystal, the usual approach is using the Bloch –Floquet
theorem to expand both the field amplitude and the
dielectric constant in plane waves whose wavevectors are
reciprocal lattice vectors.

Ek
oðrÞ ¼

X

G;l

bg;lel exp ½iðkþGÞ) ; ð15Þ

where el is the polarization vector and G are reciprocal
lattice vectors. Using this expansion in equation (3), the
problem is reduced to the solution of a system of linear
equations on bg,l the solution of which provides the allowed
mode frequencies for a given crystal (figure 7). We should

Figure 6. The dispersion relation for the 1D isotropic model
shown in figure 5. As illustrated, gaps are formed at mp/L for
integer values of m.

Figure 5. The periodic potential. L is the lattice constant.

Figure 7. The band structure calculation of a realistic 3D
photonic crystal (the inverse opal structure of figure 1) according
to theoretical calculations. The shaded region corresponds to the
gap predicted (width 5.1%) and partially observed by the
Toronto group [4].
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note here that for more complicated 3D structures the
solution of the corresponding eigenvalue equation proves
to be cumbersome and highly efficient computational
techniques are usually required, see for example [5 – 11].

2.3. Fabrication of photonic crystals

In order to realize a 3D structure with a full band gap for
the propagation of light for some specific frequencies, we
need not only to show that a specific geometry could in
principle exhibit a band gap but also that the specific micro-
structure is amenable to microfabrication in the lab [12]. To
illustrate the methods followed by various groups in this
field we will start with the simplest case, the traditional
multilayer film. The latter is the simplest dielectric structure
where one can observe inhibition of the linear propagation
of an EM wave. It is relatively easy to construct by
assembling together dielectric layers with alternating high
and low refractive indexes.

To go further than that, i.e. to create a band gap in the
propagation of an EM wave in two dimensions, we need
something more sophisticated than simply contrast in the
index of refraction. We need to find a specific geometry that
will provide a full band gap for a range of frequencies in
two dimensions. For this we need to keep in mind that the
EM field consists of two types of modes. The transverse
electric (TE) and transverse magnetic (TM) ones. To
achieve a complete band gap for all polarizations, the
corresponding bands should not only exist but also overlap.
TM band gaps are favoured in a lattice of isolated high
index regions as in an array of dielectric columns in air. In
contrast, TE band gaps are favoured in the inverse structure
as in an array of air columns (veins) drilled in a dielectric
substrate. Therefore to achieve a full band gap, we need
somehow to reconcile these seemingly contradictory con-
ditions [1]. A structure satisfying this, is a triangular lattice
of low index columns (air) inside a high index medium
(silicon), see figure 8. More specifically for the case where
the radius of the columns is large enough, the spots between
the columns behave like localized regions of high refractive
index material and thus the above requirement should be
satisfied. It was predicted that for r/a=0.48 for the ratio
between the radius of the air columns to the lattice
constant, a complete photonic band gap should form
exhibiting a gap –midgap frequency ratio of about 19%.
The experimental verification was provided by Gruning et
al. [13], who constructed the crystal using an electrochemi-
cal technique to etch out columns in a silicon substrate.
Their subsequent measurements verified a band gap at
l=5 mm.

However, to achieve complete inhibition of light in all
directions, we need a 3D structure which exhibits
periodicity in all three directions. Out of the plethora of
different geometries, the one that was found, in theory

first [14] and experimentally later [15] to support a full 3D
band gap is the diamond lattice.2 The structure initially
suggested by the Iowa group consists of either dielectric
spheres in air or air spheres embedded in a dielectric
medium. Yablonovitch managed to implement the latter
by mechanically drilling cylindrical holes through a
dielectric block (with n*3.6). The points where his
tunnels coincided formed a diamond-like structure (see
figure 9). In spite of the apparent simplicity and initial
success of the method in demonstrating the existence of a
band gap in the microwave region, the application of the
same method for optical waves proved to be of great
difficulty. In this case, the spheres and consequently the
drill had to be in the micrometre region! We remind here
that in order for the TM and TE gaps to overlap, both
constituent materials (air and dielectric) have to be
topologically interconnected and also a large contrast (at
least 3) between the two is essential. These constraints
limited the use of microengineering fabrication techniques
(electron beam and X-ray lithography [16] which proved
to be very successful in longer wavelengths.3

A different approach was the layer stacking technique
proposed by Ho et al. [17] (see figure 11) and implemented
by Lin et al. [18] where a gap at 1.5 mm was reported and
the seven layer crystal exhibited 1% transmission (it was
believed to drop to 0.1% with ten layers). Along similar
lines using a combination of electron beam lithography and
reactive ion etching Noda et al. managed to stack
semiconductor rods with micrometre dimensions [19]. They
reported 99.9% attenuation between 6 and 9 mm using
eight layers. We note here that both methods are promising
for any large scale technological application (see next
section) as they are characterized by low cost and high
reliability.4

To overcome the difficulties of 3D sub-micron engineer-
ing it has also been proposed to utilize systems that tend to
self assemble themselves into various geometries. The most
promising one proved to be colloidal crystals and artificial
opals. Colloidal particles have been synthesized by materi-
als such as latex and SiO2 in the range of a few nanometres
to a few hundred micrometres. A suspension of colloidal
microspheres, with a typical concentration of 1010 particles
cm–3, can residue under gravity into a cubic-closed-packed
structure with size of the order of 1 cm.5

2We note here that proposed common semiconductors such as silicon and
germanium also follow diamond geometry.

3We note here the ion drill proposed by the Yablonovitch group which led
to the fabrication of structures with band gaps in the near-infrared (1.1-1.5
mm). The problem in this case was that only a few unit cells could be
reliably produced.

4The MIT group led by Joannopoulos has recently proposed to build a 3D
crystal by stacking 2D ones (see figure 10). They predict the opening of a
full 3D band gap.

5Their crystalline structure resembles that of natural opals.
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In spite of the advantage of producing inherently 3D
structures [21] compared to the 2D ones using lithographic
techniques, it appears to be extremely difficult to achieve the
required refractive index contrast and interconnectedness
for a full 3D band-gap to open. On the other hand, if they
are used as templates to fabricate inverse opals (figure 1), i.e.
cubic-closed-packed lattices of air bubbles on a dielectric
matrix (silicon or GaAs) [4,22,23], near visible photonic
band gaps with a gap to mid-gap frequency ratio of about
10%were predicted (see figure 7).We note here that the void
regions that are left behind after the etching of the original
template (Swiss cheese structure) will allow the injection of
atoms or dye molecules thus making quantum optical type
experiments possible.6 In spite of the initial success of the
inverted opals in providing rather large band gaps in the
infrared region, problems of gap instability to disorder
effects may prove to be difficult to overcome. A solution to
this was recently proposed by John’s group at the University
of Toronto [25]. They proposed an alternative photonic
crystal architecture consisting of square spiral posts in a
tetragonal lattice (figure 12). It seems that this structure
could exhibit a quite large and robust 3D PBG occurring
between the fourth and fifth EM bands and is also amenable
to large-scale microfabrication using glancing angle deposi-
tion (GLAD) techniques. Spiral post lattices with microscale
features have previously been synthesized using the GLAD
method. In this technique, complex 3D structures can be
fabricated by combining oblique vapour deposition and
precisely controlled motion of a two-dimensionally pat-
terned substrate. In addition, their square spiral posts can
serve as templates for growing PBG materials from an even
larger range of materials. In this case, a high refractive index

material may be infiltrated to fill the void regions between
the posts, with the posts subsequently removed by some
selective etching process, leaving behind an ‘inverted
structure’. Their calculations have shown that the new

Figure 8. Macroporous silicon forming a 2-dimensional triangular lattice taken using scanning electron techniques [13]. (a) A porous
silicon bar of width 200 mm and height 75 mm. (b) A tenfold magnification of the inset shown in (a). (c) A tenfold magnification of the
inset shown in (b). The lattice constant of the macropore array is 2.3 mm, the pore diameter is 2.13 mm and the thinnest parts of the pore
walls are 170 nm.

Figure 9. The first prototype structure predicted to exhibit a
large and robust 3D PBG structure designed by Yablonovitch
[15]. It consists of an overlapping array of air spheres arranged
in a diamond lattice. It was created by drilling an array of criss-
crossing cylindrical holes into a bulk dielectric of refractive index
n=3.6 where band gaps of the order of 20% were demon-
strated. (Picture courtesy of the Toronto group).

6In [24] a similar type of experiment for Bell Inequality testing is proposed.
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inverted structure could exhibit an even bigger band gap
which, for the case where the initial structure is infiltrated by
silicon gaps, could be of the order of 27%.

2.4. Applications

One of the most immediate applications of photonic
crystals was to be in optoelectronic devices where unwanted
spontaneous emission affected their performance. On the
left of figure 13 we show the electron dispersion relation for
a direct gap semiconductor. Assuming that is embedded in
a photonic crystal (whose photonic dispersion relation is

shown on the right of the same graph) it is easy to see that if
the PBG overlaps the electronic band edge then the
electron – hole recombination rate could be inhibited. That
is simply because the potentially emitted photon will have
no place to go! In a semiconductor laser this would lead to
near unity efficiency into the lasing mode. This theoretical
idea was recently implemented [27] in the 2D band edge
micro-laser in which lasing occurs preferentially at the 2D
photonic band edge even though the emission from the
active region has a broad frequency distribution (figure 14).

Along the same lines, light extraction from light-emitting
diodes (LEDs) would be more efficient. The main problem
there is that only the light emitted in a narrow angle7

manages to escape and the rest is usually trapped within the
film and is either absorbed or emerges from the edge of the
device. There are several ways to partially overcome this,
for example using photon recycling, rough surface, etc.,
which could increase the efficiency to 30% but none of
them actually alters directly the spontaneous emission
properties of the device. If a 2D photonic crystal pattern in
the form of a triangular lattice of air holes is introduced

Figure 10. The woodpile structure fabricated by repetitive
deposition and etching of multiple dielectric films. (a) Sketch
of the layer-by-layer 3D photonic band gap structure. It is made
from layers of one-dimensional rods with a stacking sequence
that repeats itself every four layers, a unit cell, with a repeat
distance of c. (b) Plot of the computer calculated photonic
density of states assuming that the refractive index of the rods is
n=3.60, the filling fraction of the 3D structure f=w/d=0.28
and c/d=1.414. A complete photonic bandgap exists from
0.46c/a to 0.56c/a, where c is the speed of light in vacuum [16].

Figure 11. Computer reproduction of a novel 3D photonic crystal
suggested by the Joannopoulos group [20]. The structure could
be fabricated layer by layer following a three layer period thus
allowing the use of traditional lithographic techniques, along
with a high degree of control in placing defects (waveguides,
cavities and other optical components) in the crystal. The layers
consist of alternating stacks of the two characteristic types of 2D
(or slab) photonic crystals: dielectric rods in air and air holes in
dielectric.

7The efficiency being 1/(2n2), where n is the index of refraction for the
emitting material. For GaAs, n=3.5 and the efficiency is approximately
5%.
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into the semiconductor [31], extraction efficiency of the
order of 100% is expected. This is simply due to the large
band gap that will appear for in-plane propagation forcing
the photons to come out of the slab in the vertical

directions. In addition, unlike the planar microcavity, the
efficiency is enhanced over a wide range of frequencies and
as no resonance or photon recycling is needed, the photon
lifetime is shorter. The latter of course leads to a reduction
of the absorption losses and an increase of the modulation
speed of the LED.

We proceed by describing the potential applications of
the presence of defect modes in a photonic crystal. It was
shown that by adding or removing a piece of dielectric
material the periodicity of the lattice is locally altered and
this can lead to the appearance of highly localized modes of
light in an otherwise mode free surrounding. In particular,
removing a small amount of high index material from one
unit cell (air defect), leads to the occurrence of a localized
mode just above the top of the lower band in analogy to the
acceptor modes in semiconductors. On the other hand
adding a small amount of high index material to a single
unit cell (dielectric defect) forces a single localized mode to
split off from the upper band edge as in semiconductor
donor modes. The former case—an air defect—is basically
a high-Q microcavity with tunable frequency.8 All types of
applications that involve high-Q optical microcavities thus

Figure 12. Top: the spiral crystal made of square spiral posts in a
tetragonal lattice proposed by Toader and John. It is believed
that structures like these might provide wider and more robust
band gaps to disorder [25]. Bottom: The Si crystal obtained by
inverting this template. A gap of 23.6% occurs between fourth
and fifth bands of the photon dispersion relation. The
corresponding total DOS is shown in the inset (arbitrary units).

Figure 13. Diagram showing the dispersion relation for both the
photon and electronic modes in a semiconductor integrated with
a PBG material. The EM dispersion relation for the PBG
structure is shown on the right whereas on the left is the electron
wave dispersion relation typical of a direct gap semiconductor. If
an electron for the conduction band were to recombine with a
hole from the valence band and the PBG overlaps the electronic
band edge, the resulting photon would not be emitted as there are
no modes available there! This will result in the inhibition of the
electron – hole recombination rate, seriously improving the
performance of devices like semiconductor lasers as first
suggested by Yablovonitch [26].

8The frequency of the defect mode is an increasing function of the volume
of the defect area [1] and its energy is exponentially localized (usually
within a few lattice constants).
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could be implemented. The main advantage over usual
high-Q superconducting metallic cavities is the operation
on higher frequencies without almost any losses.9 Various
devices such as frequency filters, atom masers, zero-
threshold lasers should be more efficient (see figure 14
(b)). Also experiments involving single atom–photon
interaction in the strong coupling regime is important and
should be more easily realizable.

In a similar way to the introduction of point defects,
someone can also create line defects in an otherwise perfect
structure. Such defects could be used as lossless waveguides
[33 – 37] where light could be guided around sharp corners
with no reflection or scattering losses (see figure 15).

Last but not least, we mention the idea of creating
tunable PBGs by the infiltration of inverted opal or spiral
structures with some low index of refraction liquid crystal.
The potential of controlling the direction of the nematic
liquid crystal molecules through an external electric field,
could alter the optical properties of the whole structure and
simply provide external control over the width of a full 3D
gap [38]. The resulting tunability of spontaneous emission,
waveguiding effects and light localization may considerably
enhance the technological value of a composite liquid
crystal PBG material over and above that of either a bulk
liquid crystal or a conventional PBG material by itself. A
tunable optical microchip, which routes light from a set of
optical fibres and could be used as part of a greater optical
circuit, is shown in figure 16.

We conclude this part by noting that the intense interest
in the field of photonic crystals in recent years has not
solely been due to the above-described ‘optical circuit’ type
of applications, where light was treated as a classical field.
A lot of research has also been towards the understanding
of the light –matter interactions within a photonic crystal
at the quantum level. Several novel phenomena, such as,
for example, the inhibition of spontaneous emission and the
creation of ‘atom–photon’ bound states [39 – 66] and also
the existence of transparency near a photonic band edge
[67 – 71] were found in these studies. Describing the effect of
inhibition of spontaneous emission and the creation of
‘atom–photon’ bound states will be the task of the next
section.

3. Spontaneous emission

3.1. The influence of the reservoir

It was not until the 1980s [72] before it was established that
spontaneous emission is not an intrinsic property of matter
over which we have no control of [73] but a process greatly
dependent on the nature of the surrounding environment.

We should note here that it was actually 1946 when an
effectively overlooked paper by Purcell [74] already had
suggested that the spontaneous emission rate of radiating
dipoles can be tailored by using a cavity tomodify the dipole-
field coupling and the density of the available photonmodes.
If the modal density in the vicinity of the frequency of
interest is greater than that of free space, then spontaneous

Figure 14. Designs for 2D photonic crystal micro-lasers. (a) The
Band Edge micro-laser. Stimulated emission (arising from
electron – hole recombination) from the multiple quantum well
active region occurs preferentially at the band edge. It has been
proved that strong feedback and memory effects can arise in this
case [28]. For a real 3D case this would lead to lasing without a
conventional cavity [29,30]. The Noda group has realized a
precursor to this where broad frequency emission occurs
preferentially at the band edge [27] (courtesy of S. Noda, Kyoto
University). (b) Defect Mode micro-laser where a defect mode
with a localized state of light within the 2D PBG structure is
engineered by allowing for a missing pore in the 2D photonic
crystal. Stimulated emission from the multiple quantum well
active region falls mainly into the localized mode (courtesy of A.
Scherer, California Institute of Technology).

9It was experimentally shown [32] that the quality factor increases
exponentially with the size of the crystal.
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emissionwill be enhanced, if it is less, it will be inhibited. This
is thePurcell effect. Technological developments, in the form
of high quality and finesse cavities, extended this to what we
know today as cavity quantum electrodynamics (QED) [75].
One of the most characteristic concepts that was introduced
at the time was the vacuum Rabi oscillations. To illustrate
this, assume you have an atom, excited to some Rydberg
state, placed inside a microwave cavity of high quality factor
of the order of 1010 and mode spacing larger than the mode
width. Assuming that the frequency of the transition from
the initial Rydberg state to the nearest one matches one of
the cavity modes, then spontaneous emission is greatly
enhanced, whereas it is severely inhibited when the atomic
transition is detuned from all cavity modes by an amount
larger than the mode width. In the case of exact resonance,
the spontaneously emitted photon is re-absorbed by the
atom then re-emitted again and so on, leading to an
oscillatory exchange of energy between the atom and the
cavity radiation field. The operation of the micromaser is
based on this effect where a constant exchange of coherent
microwave photons between the mirrors of a microwave
cavity and Rydberg atoms are flying through [76].

From the implementation point of view, the technologi-
cal expertise required to built high-Q cavities has only
recently moved from the microwave to the optical or near
optical regime allowing for the possibility of similar
research in the optical range [77]. The great obstacle in

Figure 15. Waveguiding in photonic crystals. (a) Right angle waveguide channel in a 2D photonic crystal. The propagation of the field
modes is through a line defect with no reflection or scattering losses (courtesy of J. D. Joannopoulos’ group, Massachusetts Institute of
Technology). (b) and (c) Other line defect microstructures fabricated in macroporous silicon with a lattice constant of 1.5 mm. The
splitting of the modes in (b) could have application in building optical devices such as interferometers. In (c), the air holes within the line
defect operate as reflectors or mirrors thus creating a resonator cavity within the waveguide (courtesy of Max-Planck Institute for
Microstructure Physics, Halle, Germany).

Figure 16. A futuristic depiction of an electro-actively tunable
PBG routing device. The PBG structure has been infiltrated with
an optically anisotropic material such as a liquid crystal
(indicated by the yellow arrows) which responds strongly to
external electric fields. Applying a voltage could alter the optical
properties of the whole structure such that opening or closing of
the corresponding photonic band gap could be achieved. This
could lead to the possibility of routing light from an optical fibre
into one of several output fibres (courtesy of S. John’s group,
University of Toronto).
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localizing light in cavities is related to the shape of the
cavity modes. Basically, there are always tails of the usual
Lorenzian distribution of the cavity lineshape that extend
to infinity allowing an excited atom located in the cavity to
eventually decay to the ground state.

Extensive research in dielectric structures of the form
described in the previous section showed that it was
possible to fabricate situations where the modal density of
the electromagnetic field exhibited gaps for a range of
frequencies. As a qualitative approximation we would say
that an excited atom tuned with the gap should never
decay as there are no modes for its photon to exist.
Initially led by John and collaborators and then quickly
spreading to many groups throughout the world, an
enormous amount of work has been produced dealing
with questions usually asked in quantum optics, now
extrapolated to PBGs, at least for their theoretical
properties under somewhat idealized situations using the
generalized density of modes for the PBG material [39 –
57,60,62 – 65] or under more involved situations where the
local density of modes is used for the description of the
PBG material [58,59,61,66]. The purpose of the following
sections is to review some of the tools used in the above
studies and more specifically in describing the dynamics of
spontaneous emission. The first part describes the case
where the atoms interact with the free space vacuum and
the second with the structured continuum of a photonic
crystal.

3.2. Two-level atom in free space: Weisskopf –Wigner
theory

Suppose now we initially prepare our two-level atom in the
upper state of the doublet and allow it to interact with the
modes of the vacuum. The corresponding Hamiltonian, in
the dipole and rotating wave approximations, is given by
[78,79]

H ¼ !ho1j1ih1jþ !ho2j2ih2jþ !h
X

k

okb
y
kbk

þ !h
X

k

ðj2ih1jbkg21ðokÞ þ h:c:Þ ;
ð16Þ

where

g21ðokÞ ¼ !o12m21
!h

!h

2e0okV

" #1=2

êekm̂m21; ð17Þ

and

m̂m21 ¼
Z

f2ðxÞexf1ðxÞd3x ; ð18Þ

is the dipole moment for the transition j1i (lower state with
wavefunction f1(x)) to j2i (upper state with wavefunction
f2(x)). Here, bk is the annihilation operator for the field
mode k, V is the quantization volume and e0 is the electric

permittivity of free space. Also, !hoj, j=1, 2, is the energy
of the jth atomic level. Finally, !hok and êek denote the
energy and the polarization vector of the kth reservoir
mode, respectively.

Transforming the system in the interaction representa-
tion [78,79] we obtain the interaction Hamiltonian as

HðIÞ ¼ !h
X

k

j2ih1jbkg21ðokÞ exp ½!iðok ! o12Þt) þ h:c: ;

ð19Þ

where !ho12= !h(o2 –o1). Assuming that initially the field
modes are in the vacuum state j0i, the wavefunction of the
system can be written in terms of the state vectors as

jcðtÞi ¼ a2ðtÞj2; 0iþ
X

k

bkðtÞj1; ki ; ð20Þ

where the coefficients bk represent probability amplitudes
of emitting one photon of energy ok belonging to the
vacuum modes j1, ki (with the atom in state j1i). Also
a2(t) represents the probability of the atom being in the
excited state and the field has no photons. The time
evolution of the system is described by the Shrödinger
equation

i!h
@

@t
jcðtÞi ¼ HðIÞjcðtÞi ; ð21Þ

which using equation (19) leads to the following set of first
order, coupled linear differential equations

i _aa2ðtÞ ¼
X

k

g21ðokÞexpð!idktÞbkðtÞ ; ð22Þ

i _bbkðtÞ ¼ g"21ðokÞexpðidktÞa2ðtÞ ; ð23Þ

where dk=ok –o12 is the detuning of the emitted photon
frequency from the atomic transition. We formally
integrate equation (23) and obtain

bk ¼ !ig"21ðokÞ
Z t

0
a2ðt0Þ exp ðidkt0Þdt0 þ bkð0Þ : ð24Þ

Taking into account that bk(0)=0, we substitute equation
(24) into equation (22) and obtain

_aa2ðtÞ ¼ !
Z t

0
dt0a2ðt0Þ

X

k

jg21ðokÞj2exp½!idkðt! t0Þ) ; ð25Þ

which is still an exact equation. In order to proceed we have
to calculate the kernel

Kðt! t0Þ ¼
X

k

jg21ðokÞj2 exp ½!idkðt! t0Þ) : ð26Þ

The sum over modes is generally, converted to an integral,
by including the density of modes (states) r(ok),
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X

k

jg21ðokÞj2 exp ½!idkðt! t0Þ) ¼

V

ð2pÞ3
X

s

Z
dO

Z 1

0
jg21ðokÞj2rðokÞ

* exp ½!idkðt! t0Þ) ;

ð27Þ

where dO is the solid angle and s is the light polarization.
In free space, the product jg21(ok)j2r(o)*o is a smooth
varying function of o. Taking this into account we can
approximate

Z
dO

Z 1

0
jg21ðokÞj2rðoÞ exp ½!iðok ! o21Þðt! t0Þ)

+jg21ðo21Þj2rðo21Þ
Z

dO
Z 1

0
exp ½iðok ! o21Þðt! t0Þ) ;

ð28Þ

which eventually gives [78,79]

Kðt! t0Þ ¼ g21
2

dðt! t0Þ ; ð29Þ

where g12=o12
3m212/(3pe0!hc3) is the famous free space

decay rate. This approach is the much used Weisskopf –
Wigner approximation.

The fact that the so-called response function K(t – t’) is
a delta-function means that the free space acts as an
immediate response reservoir. In other words sponta-
neous emission is dealt with as a Markovian process and
the evolution of the system depends only on the present
and not on any previous state of the reservoir.
Substituting equation (29) into (25) our initial set of
equations become

_aa2ðtÞ ¼ ! g21
2

a2ðtÞ ; ð30Þ

i _bbkðtÞ ¼ g"21ðokÞ exp ðidktÞa2ðtÞ : ð31Þ

The above equations can easily be solved with respect to
time which gives

ja2ðtÞj2 ¼ exp ð!g21tÞ : ð32Þ

3.3. Two-level atom in a photonic crystal

Assume now that our two-level atom is coupled to the
radiation field of a modified reservoir. We will specifically
assume that the atom is embedded in a three-dimensional
photonic crystal where the photon dispersion is found to be
an isotropic one and satisfies the following transcendental
equation10

ok ¼
c

4na
arccos

4n cos ðkLÞ þ ð1! nÞ2

ð1þ nÞ2

" #

: ð33Þ

The Hamiltonian and the wavefunction of the system are
still given by equations (19) and (20), and equations (22)
and (23) still describe the evolution with the difference now
that the atomic transition is occurring in the vicinity of a
band gap in the density of allowed photon modes inside the
photonic crystal. As we showed in the previous section the
excited state amplitude a2 is given by

_aa2ðtÞ ¼ !
Z t

0
a2ðt0ÞKðt! t0Þdt0 : ð34Þ

In order to calculate the kernel in this case we cannot use
the Weisskopf –Wigner approximation as the density of
states changes very rapidly in the vicinity of the atomic
transition when located near the band edge. In this case, we
must perform an exact integration in equation (26). To do
this, we observe that in the vicinity of the gap the dispersion
relation equation (33) can be approximated as

ok ¼ og þ Aðk! k0Þ2 ; ð35Þ

where A^og/k0
2 (this corresponds to a density of states of

the form r(o)*Y(o –og)/(o –og)
1/2 shown in figure 17,

with Y being the Heaviside step function [39]). The latter
combined with equation (27) gives for the response
function of equation (26)

Kðt! t0Þ ¼ b3=2expf!i½p=4þ dgðt! t0Þ)g
½pðt! t0Þ)1=2

; t > t0 ; ð36Þ

with b3/2=o12
7/2jm12j2/(6pe0!hc3) and dg=og –o12. Equa-

tion (36) demonstrates the non-Markovian character of the
reservoir. In contrast to the free space case we can see from
equation (36) that there is a contribution in the current
dynamics at time t from previous states of the system at
time t’ following an inverse square root dependence. As we
will discuss later on, this is due to the partial localization of
the emitted photon in the vicinity of the atom where it can
be re-absorbed and thus affect the atom’s evolution again
after its initial emission.

We continue by trying to derive the explicit time
dependence of the atom’s evolution. To do that we need
to solve the integro-differential equation (34). For this, we
first Laplace transform it and obtain

s~aa2ðsÞ ! a2ð0Þ ¼ ~kkðsÞ~aa2ðsÞ ; ð37Þ

10We remind here that n is the refractive index of the scatterer, a is its radius
and 2a+ bL is the lattice constant (see section 2).
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where ~aa2ðsÞ and ~KKðsÞ are the Laplace transforms of a2(t)
and K(t) accordingly. Using equation (36) we obtain for the
excited state amplitude ~aa2ðsÞ

~aa2ðsÞ ¼
ðs! idgÞ1=2

sðs! idgÞ1=2 ! ðibÞ3=2
: ð38Þ

To obtain the dependence in the time domain we invert this
using the Bromwitch formula:

a2ðtÞ ¼
1

2pi

Z eþi1

e!i1
expðstÞ~aa2ðsÞds ; ð39Þ

where the real number e is chosen such that s= e lies to the
right of all the singularities (poles and branch points) of the
function ~aa2ðsÞ. The inverse Laplace transform of equation
(38) yields [41]

a2ðtÞ ¼ 2b1x1 exp ðbx21 þ idgtÞ þ b2ðx2 þ y2Þ exp ðbx22 þ idgtÞ

!
X3

j¼1

bjyj½1! Fððbx2j tÞ
1=2Þ) exp ðbx2j þ idgtÞ ;

ð40Þ

where

x1 ¼ ðAþ þ A!Þ exp ðip=4Þ ; ð41Þ

x2 ¼ ðAþ exp ½!iðp=6Þ) ! A! exp ½iðp=6Þ) exp ½!iðp=4Þ) ;
ð42Þ

x3 ¼ ðAþ exp ½iðp=6Þ) ! A! exp ½!iðp=6Þ)Þ exp ½ið3p=4Þ) ;
ð43Þ

A, ¼ 1

2
, 1

2
1þ 4dg

27b3

$ %1=2" #1=3

; ð44Þ

bj ¼
xj

ðxj ! xiÞðxj ! xkÞ
ðj 6¼ i 6¼ k; j; i; k ¼ 1; 2; 3Þ ; ð45Þ

yj ¼ ðx2j Þ
1=2 ðj ¼ 1; 2; 3Þ ; ð46Þ

and F(x) is the error function [80]. As we see from equation
(41), if dg=0 then bx21= ib. This means that the value of
b given above can be considered as a resonant frequency
splitting, an analog of the vacuum Rabi splitting in cavity
quantum electrodynamics [81]. For large times, i.e. for large
values of bt, the terms of higher order than (bt)3/2 [80] can
be ignored, and equation (40) reduces to

a2ðtÞ ffi 2b1x1 exp ðbx21 þ idgtÞ þ b2ðx2 þ y2Þ exp ðbx22 þ idgtÞ

þ 1

2p1=2
X3

j¼1

bj
x2j

" #
exp ðidtÞ
ðbtÞ3=2

:

ð47Þ

As we see from equation (40) the atomic level splits into
dressed states caused by the atom and its own radiation
field located at the frequencies od1=og –bIm(x21) and
od2=og –bIm(x22). It is easy to see using (41) and (44)
that x21 = ijx1j2. This translates to the fact the correspond-
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Figure 18. Atomic population on the excited state, P(t)= ja2(t)j2
as a function of time for various values of the detuning from the
band edge: d=–10b (thin solid curve), d=–3.5b (thin dashed
curve), d=–1b (thin dotted curve), d=0 (thick solid curve),
d=1b (thick long-dashed curve) and d=10b (thick short-
dashed curve). The time is in units of 1/b.

Figure 17. The density of states under consideration. o12 is the
atomic frequency and od1, od2 the corresponding dressed state
frequencies. These states emerge due to the ‘self’ dressing of the
atom by its own localized radiation field.
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ing dressed state at the frequency og –bjx1j2 is the photon –
atom bound dressed state with no decay. A photon emitted
by the atom in this state will tunnel for a length scale of a
few lattice constants before being reflected back and re-
absorbed by the atom. The other dressed state conversely is
pushed outside the gap, where the density of photon states
is not zero and eventually will be responsible for the part of
the initial excitation that will eventually decay (see figure
17). In figure 18 we show the atomic population as a
function of time for various detunings from the band edge
frequency. As was expected for atomic transitions well
inside the gap (dg=– 10b), the atom remains in the excited
state for ever. In this case the second term in equation (40)
vanishes which means that no true atomic level splitting is
present in this case and the oscillations in the dynamics are
caused by the interference with a ‘quasidressed’ state
originating from the branch point term. As dg moves from
negative to positive, the other component, located at og –
bjx1j2 becomes important and eventually for dg=10b is the
major one forcing the atom to completely decay in the
usual exponential manner. We note here that this photon –
atom bound state is present even when the atomic
frequency o21 is placed outside the gap where the density
of states is not equal to zero and this is because of the
special singular behaviour around the isotropic model
there. For ‘smoother’ cases, such as smoothed models for
the PBG density of modes or a Lorenzian density of modes,
both the corresponding dressed states occur at complex
frequencies which for long times leads to complete decay of
the population to the ground state.

4. Conclusions

In this introductory review article we have discussed
phenomena in photonic crystals with emphasis on the
inhibition of spontaneous emission of atoms in such
materials. We started by describing the physics behind
photonic band gap formation by making a parallel with the
known phenomenon of electron localization in solids and
continued by presenting a simple model of a band structure
calculation. We briefly presented the state of the art
methods in fabricating photonic band gap materials. Some
of the exciting applications in the field of optoelectronics
were illustrated followed by noting the still theoretical but
really exciting possibility of circuits of light in an all optical
computing device. In the second part we moved to the
quantum regime, i.e. the interaction of the quantized
electromagnetic field inside a photonic crystal with small
atomic systems. We discussed the way of treating the
spontaneous emission of a two-level atom in free space
using the Weisskopf –Wigner theory. We concluded this
introductory review by presenting in detail the modification
in the spontaneous emission of the same two-level atom
when embedded in a photonic crystal of a specific type.

New phenomena arising by the localization of light as the
complete inhibition of the spontaneous decay, atom – photon
bound state and population trapping in a two-level atom
were derived and discussed.

Acknowledgements

DGA acknowledges Professor Artur Ekert for useful
discussions and his support in the Cambridge CQC. EP
and DGA would like to thank Professor Nikolaos Stefanou
and Dr Vassilios Yannopapas for useful discussions in the
area of photonic crystals. DGA also acknowledges St
Catharine’s College, University of Cambridge for financial
support and the Cambridge MIT Institute for travel
support. We acknowledge all the several groups that kindly
allowed their photos and graphs to be used in these article.
We also apologize if due to the introductory nature of this
article, the limited space and the vastness of the corre-
sponding literature in photonic crystals some groups with
interesting contributions in the field might not have been
mentioned.

References

[1] Joannopoulos, J. D., Meade, R. D., and Winn, J. N., 1995, Photonic

Crystals: Molding the Flow of Light (Princeton: Princeton University

Press).

[2] Yablonovitch, E., 1987, Phys. Rev. Lett., 58, 2059.

[3] John, S., 1991, Phys. Today, 44, 32.

[4] Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S.,

Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P.,

Ozin, G. A., Toader, O., van Driel, H. M., 2000, Nature, 405, 437.

[5] Stefanou, N., Karathanos, V., and Modinos, A., 1992, J. Phys.

Condens. Matter, 4, 7389.

[6] Pendry, J. B., 1996, J. Phys. Condens. Matter, 8, 1085.

[7] Stefanou, N., Yannopapas, V., and Modinos, A., 1998, Comp. Phys.

Commun., 113, 49.

[8] Ward, A. J., 1999, Contemp. Phys., 40, 117.

[9] Stefanou, N., Yannopapas, V., and Modinos, A., 2000, Comp. Phys.

Commun., 132, 189.

[10] Modinos, A., Stefanou, N., and Yannopapas, V., 2001, Opt. Express,

8, 197.

[11] Johnson, S. G., and Joannopoulos, J. D., 2001, Opt. Express, 8, 173.

[12] Koenderink, A. F., Johnson, P. M., Galisteo Lopez, J. F., and Vos, W.

L., 2002, CR Phys., 3, 67.

[13] Gruning, U., Lehman, V., Otoow, S., and Busch, K., 1996, Appl. Phys.

Lett., 68, 747.

[14] Ho, K. M., Chan, C. T., and Soukoulis, C. M., 1990, Phys. Rev. Lett.,

65, 3152.

[15] Yablonovitch, E., and Gmitter, T. J., Meade, R. D., Rappe, A. M.,

Brommer, K. D., and Joannopoulos, J. D., 1991, Phys. Rev. Lett., 67,

3380.

[16] Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas,

R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R., and Bur,

J., 1998, Nature, 394, 251.

[17] Ho, K. M., Chan, C. T., and Soukoulis, C. M., 1994, Phys. Rev. Lett.,

65, 3152.

[18] Lin, S. Y., Fleming, J. G., Sigalas, M. M., Biswas, R., and Ho, K. M.,

1999, Phys. Rev. B, 59, 15579.

316 D. G. Angelakis et al.

D
ow

nl
oa

de
d 

by
 [N

U
S 

N
at

io
na

l U
ni

ve
rs

ity
 o

f S
in

ga
po

re
] a

t 0
5:

15
 0

5 
N

ov
em

be
r 2

01
7 



[19] Noda, S., Yamamoto, N., and Sasaki, A., 1996, Jap. J. Appl. Phys.

Part 2, 35, L909.

[20] Johnson, S. G., and Joannopoulos, J. D., 2000, Appl. Phys. Lett., 77,

3490.

[21] Winjhoven, J. E. G. J., and Vos, W. L., 1998, Science, 281, 802.

[22] Schriemer, H. P., van Driel, H. M., Koenderink, A. M., and Vos, W.

L., 2001, Phys. Rev. A, 63, 011801(R).

[23] Galisteo-Lopez, J. F., Palacios-Lidon, E., Castillo-Martinez, E., and

Lopez, C., 2003, Phys. Rev. B, 68, 115109.

[24] Angelakis, D. G., and Knight, P. L., 2002, Eur. Phys. J. D, 18, 247.

[25] Toader, O., and John, S., 2001, Science, 292, 5519.

[26] Yablonovitch, E., 2001, Sci. Am., 285, 47.

[27] Imada, M., Noda, S., Chutinan, A., Tokuda, T., Murata, M., and

Sasaki, G., 1999, Appl. Phys. Lett., 75, 316.

[28] John, S., and Quang, T., 1995, Phys. Rev. Lett., 74, 3419.

[29] John, S., and Quang, T., 1995, Phys. Rev. Lett., 74, 4479.

[30] Florescu, L., Busch, K., and John, S., 2002, J. Opt. Soc. Am. B, 19,

2215.

[31] Fan, S., Villenevue, P. R., and Joannopoulos, J. D., 1997, Phys. Rev.

Lett., 78, 3294.

[32] Villeneuve, P. R., Fan, S., and Joannopoulos, J. D., 1996, Phys. Rev.

B, 54, 7837.

[33] Mekis, A., Chen, J. C., Kurland, I., Fan, S. H., Villeneuve, P. R., and

Joannopoulos, J. D., 1996, Phys. Rev. Lett., 77, 3787.

[34] Stefanou, N., and Modinos, A., 1998, Phys. Rev. B, 57, 12127.

[35] Yariv, A., Xu, Y., Lee, R. K., and Scherer, A., 1999, Opt. Lett., 24,

711.

[36] Fan, S. H., Johnson, S. G., Joannopoulos, J. D., Manolatou, C., and

Haus, H. A., 2001, J. Opt. Soc. Am. B, 18, 162.

[37] Yannopapas, V., Modinos, A., and Stefanou, N., 2002, Phys. Rev. B,

65, 235201.

[38] Busch, K., and John, S., 1999, Phys. Rev. Lett., 83, 967.

[39] John, S., and Wang, J., 1990, Phys. Rev. Lett., 64, 2418.

[40] John, S., and Wang, J., 1991, Phys. Rev. B, 43, 12772.

[41] John, S., and Quang, T., 1994, Phys. Rev. A, 50, 1764.

[42] Kofman, A. G., Kurizki, G., and Sherman, B., 1994, J. Mod. Optics,

41, 353.

[43] Bay, S., Lambropoulos, P., and Mølmer, K., 1997, Phys. Rev. A, 55,

1485.

[44] Zhu, S. Y., Chen, H., and Huang, H., 1997, Phys. Rev. Lett., 79,

205.

[45] Bay, S., Lambropoulos, P., and Mølmer, K., 1997, Phys. Rev. Lett.,

79, 2654.

[46] Quang, T., Woldeyohannes, M., John, S., and Agarwal, G. S., 1997,

Phys. Rev. Lett., 79, 5238.

[47] Vats, N., and John, S., 1998, Phys. Rev. A, 58, 4168.

[48] Woldeyohannes, M., and John, S., 1999, Phys. Rev. A, 60, 5046.

[49] Nikolopoulos, G. M., Bay, S., and Lambropoulos, P., 1999, Phys.

Rev. A, 60, 5079.

[50] Yang, Y. P., Zhu, S. Y., and Zubairy, M. S., 1999, Opt. Commun., 166,

79.

[51] Paspalakis, E., Angelakis, D. G., and Knight, P. L., 1999, Opt.

Commun., 172, 229.

[52] Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R., and Bay, S.,

2000, Rep. Prog. Phys., 63, 455.

[53] Nikolopoulos, G. M., and Lambropoulos, P., 2000, Phys. Rev. A, 61,

053812.

[54] Zhu, S. Y., Yang, Y. P., Chen, H., Zheng, H., and Zubairy, M. S.,

2000, Phys. Rev. Lett., 84, 2136.

[55] Yang, Y. P., and Zhu, S. Y., 2000, Phys. Rev. A, 62, 013805.

[56] Yang, Y. P., and Zhu, S. Y., 2000, Phys. Rev. A, 62, 043809.

[57] Yang, Y. P., and Zhu, S. Y., 2000, J. Mod. Optics, 47, 1513.

[58] Li, Z. Y., Lin, L. L., and Zhang, Z. Q., 2000, Phys. Rev. Lett., 84,

4341.

[59] Li, Z. Y., and Xia, Y., 2001, Phys. Rev. A, 63, 043817.

[60] Florescu, M., and John, S., 2001, Phys. Rev. A, 64, 033801.

[61] Wang, X. H., Wang, R., Gu, B. Y., and Yang, G. Z., 2002, Phys. Rev.

Lett., 88, 093902.

[62] Zhang, H. Z., Tang, S. H., Dong, P., and He, J., 2002, Phys. Rev. A,

65, 063802.

[63] Zhang, H. Z., Wang, J. B., and Tang, S. H., 2003, J. Mod. Optics, 50,

1649.

[64] Woldeyohannes, M., and John, S., 2003, J. Opt. B, 5, R43.

[65] Yang, Y. P., Fleischhauer, M., and Zhu, S. Y., 2003, Phys. Rev. A, 68,

043805.

[66] Wang, X. H., Gu, B. Y., Wang, R., and Xu, H. Q., 2003, Phys. Rev.

Lett., 91, 113904.

[67] Paspalakis, E., Kylstra, N. J., and Knight, P. L., 1999, Phys. Rev. A,

60, R33.

[68] Angelakis, D. G., Paspalakis, E., and Knight, P. L., 2000, Phys. Rev.

A, 61, 055802.

[69] Angelakis, D. G., Paspalakis, E., and Knight, P. L., 2001, Phys. Rev.

A, 64, 013801.

[70] Petrosyan, D., and Kurizki, G., 2001, Phys. Rev. A, 64, 023810.

[71] Du, C. G., Hu, C. F., Hu, Z. F., and Li, S. Q., 2003, Phys. Lett. A,

307, 196.

[72] Kleppner, D., 1981, Phys. Rev. Lett., 47, 233.

[73] Weisskopf, V., and Wigner, E., 1930, Z. Phys., 63, 54.

[74] Purcell, E. M., 1946, Phys. Rev., 69, 681.

[75] Haroche, S., and Kleppner, D., 1989, Phys. Today, 42, 24.

[76] Hansch, T. W., and Walter, H., 1999, Rev. Mod. Phys., 71, 242.

[77] Yamamoto, Y., and Slusher, R. S., 1993, Phys. Today, 46, 66.

[78] Scully, M. O., and Zubairy, M. S., 1997, Quantum Optics (Cambridge:

Cambridge University Press).

[79] Meystre, P., and Sargent III, M., 1999, Elements of Quantum Optics

(Berlin: Springer-Verlag).

[80] Gradshteyn, I. S., and Ryzhik, I. M., 1980, Table of Integrals, Series

and Products (New York: Academic Press).

[81] Berman, P. R. (ed.), 1994, Cavity Quantum Electrodynamics (London:

Academic Press).

Dimitris G. Angelakis is a Research Fellow of St

Catharine’s College, Cambridge, a position that he

holds at the Centre for Quantum Computation in

the Department of Applied Mathematics and

Theoretical Physics, University of Cambridge. He

was awarded his BSc degree and a MSc degree from

the Physics Department, University of Crete in 1997

and 1998, respectively and his PhD from the Physics

Department, Imperial College London in 2001. His

research interests include studies in the areas of

quantum optics, photonic crystals, CQED, Bell

inequality tests, quantum information theory and

quantum computation.

Emmanuel Paspalakis received a BSc degree and a

MSc degree from the Physics Department, Univer-

sity of Crete in 1994 and 1996, respectively, and a

PhD degree from the Physics Department, Imperial

College London in 1999. After post-doctoral studies

at the Physics Department, Imperial College Lon-

don he joined the Materials Science Department,

University of Patras in 2001, where he is currently a

lecturer. His research contributions include theore-

tical studies in the areas of quantum optics,

optoelectronics, dynamics of nanostructures and

quantum computation.

317Photonic crystals and inhibition of spontaneous emission: an introduction

D
ow

nl
oa

de
d 

by
 [N

U
S 

N
at

io
na

l U
ni

ve
rs

ity
 o

f S
in

ga
po

re
] a

t 0
5:

15
 0

5 
N

ov
em

be
r 2

01
7 



Peter Knight is Head of the Physics Department at

Imperial College London and has worked in

quantum optics for many years. He was awarded

his D Phil from Sussex University in 1972 following

undergraduate studies at the same institution. He

subsequently held research appointments at the

University of Rochester and at Royal Holloway

before joining Imperial in 1979. He is the current

President of the Optical Society of America, and

Editor of the Journal of Modern Optics (and of

Contemporary Physics).

318 D. G. Angelakis et al.

D
ow

nl
oa

de
d 

by
 [N

U
S 

N
at

io
na

l U
ni

ve
rs

ity
 o

f S
in

ga
po

re
] a

t 0
5:

15
 0

5 
N

ov
em

be
r 2

01
7 


