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can be effectively tuned using an external laser driving a quasi-resonant Raman transition between 
the BEC components. Our scheme allows one to change the effective interactions between polarons 
in different sites from attractive to zero. This is achieved by simply changing the intensity and the 
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Ultracold atomic gases are one of the most advanced experimental and theoretical platform for quantum sim-
ulations1, ranging from continuous systems in shallow traps to discrete models on a lattice2, 3, with either short 
contact or long range dipolar interactions, with various dimensionalities and in the presence of impurities or 
disorder4. Such flexibility makes possible the simulation of typical models of condensed matter physics, high 
energy physics, quantum biology and chemistry5–10. Perhaps even more importantly, they allow the simulation of 
quantum systems in ranges of parameters which go beyond standard models of condensed matter physics. A par-
adigmatic examples is provided by polarons, introduced in condensed matter to describe charge carriers dressed 
by lattice phonons, the standard example being electrons moving in metals. Although bosonic carriers are unu-
sual in solid state systems, ultracold bosonic atoms in optical lattices are the perfect platform for studying bosonic 
polarons. Ultracold polarons are indeed a well established area of both theoretical and experimental investigation 
Triggered by experimental advances in cold atomic mixtures and impurities immersed in Bose-Einstein con-
densates (BEC)11–14, many theoretical works have analysed interesting problems in this context. These include 
the study of effective polaron-polaron interactions15–19, clustering and transport of polarons20–24, self-trapping 
of impurities25, multi-polaron problems26–28, probing BEC with impurities29–32, BEC-generated entanglement of 
impurities33, non-Markovian environments34. Furthermore attractive and repulsive polarons have been theoreti-
cally studied35–37 and, in the fermionic case, experimentally observed38, 39. A two-band model for the impurity has 
been recently considered in ref. 40.

An important feature of BEC polarons is that when more than one impurity is immersed in a BEC an effective 
boson-mediated interaction between polarons appears21, 41. Indeed the presence of an impurity atom deforms 
locally the BEC equilibrium wavefunction, inducing an evironment-mediated interaction between polarons, 
whose strength depends on the physical characteristics both of the impurity atoms and of environment itself.

Up to now, the environment considered for the BEC-polaron problem consists of a single component BEC. 
However so far the physics of polarons in composite reservoirs, i. e. consisting of BEC mixtures, has not been 
investigated. Although composite systems of interacting BEC have been studied42–45, the effect of their coupling 
with an impurity has not yet been addressed.

Scope of the present manuscript is to show how substantially new features can be engineered in experimentally 
accessible ultracold atomic polarons if one considers a BEC mixture of two Raman coupled hyperfine states. Our 
system consists of impurity atoms immersed in a two component BEC. We will show how the polaron parameters 
and the inter-polaron interaction can be modified by tuning the Raman coupling between the BEC hyperfine 
levels of the BEC. In particular we show that the inter-polaron interaction can, in our model, be tuned without 
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changing the impurity BEC coupling strength but just the internal Raman coupling. We first analytically calculate 
the deformation of the two-component BEC induced by the presence of the impurities. We then introduce the 
Raman coupling and calculate the effective interaction potential between two polarons and show how it can be 
tuned by varying the Raman coupling strength. Our scheme appear to be within the actual experiment feasibility 
using single atom addressing techniques46, 47 and a species-selective dipole potential12, 43 in a two photons Raman 
coupling scheme48. In the following section we will illustrate our main results, all the details about the model 
Hamiltonian and the derivation being described in Methods.

Results
Effective deformations induced by impurity atoms. The system, sketched in Fig. 1, consists of impu-
rity atoms trapped in an optical lattice, (orange) interacting with a two component BEC. Specifically the mixture 
is made of a single atomic species in two different hyperfine states (the two components are represented respec-
tively in yellow and green in Fig. 1). Such configuration is experimentally realisable by using species-selective 
optical potentials, namely an optical lattice experienced only by the impurity atoms in the system12, 43. The average 
heating of this kind of configuration depends strongly on the detuning of the trapping laser from the resonant 
atomic transition, and it has been quantitatively evaluated in ref. 43.

As shown in Methods, we assume that the two component BEC is trapped in a potential shallow enough to 
assume a uniform free condensate density. Indeed the curvature of the trapping potential in typical BEC exper-
iments49 can be, with a good approximation, be neglected in the centre of the trap. Besides, spatially uniform 
condensates have been experimentally realised in an optical box-like trap50.

All the atoms in the system weakly interact with each other via a repulsive contact pseudo-potential. 
Specifically, in Fig. 1, we indicate with gij

b( ) the collisional coupling constants between a pair of atoms of the two 
component BEC and with gij

b( ) the coupling constants between an impurity and one atom of the j component of 
the BEC mixture (j ∈ {A, B} as indicated in Fig. 1). As discussed in Methods we also include an external laser 
coupling between the two BEC hyperfine levels |a〉 and |b〉, Ω in Fig. 6, leading to an effective Raman coupling 
lHRam, as shown in refs 51–54.

Let us start by considering static impurities trapped, in the tight-binding limit, in a deep optical lattice poten-
tial with negligible hopping. The presence of an impurity atom creates a localised spatial deformation of the 
condensate order parameters giving rise to a static polaron.

We characterise the structure of such polaron via a mean field approach, (see Methods for details) namely 
substituting the BEC field operators ψà r( )i  with the corresponding order parameters ψi(r). These in turn can be 
expressed as the sum of an unperturbed uniform ψ0i(r) term plus a linear correction term θi(r) which describes 
the BEC deformation induced by the impurities16, 17, 21. This allows us to obtain the Gross-Pitaevskii equations for 
the order parameters in presence of impurities.

Using a standard approach we first neglect the presence of the impurity atoms gi
(ab) = 0 (and therefore we 

assume θi(r) = 0). For a uniform condensate ψ = ⋅n er( )i i
iq r

0 0 i 55, and the stationary condition δHGP/δψ0i
* = 0 

leads to the following expression for the chemical potential �m = + −≠
Ωg n g n2i

b
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, where Ω is the 

Raman coupling strength defined in equation (18) (see Methods for details). The next step is to take into account 
the presence of the impurity and to impose stationary conditions δHGP/δθi = 0. Assuming θi(r) to be real, these 
lead to the following coupled differential equations

Figure 1. Scheme of the model: an impurity atom (red), trapped in a fixed site of a deep optical lattice with 
spacing a = λ/2 (orange), interacts with a mixture of two BECs (green and yellow) trapped in a very shallow 
potential. The collisional coupling strengths between pairs of atoms of the two components of the condensates 
and between impurities and BEC atoms are respectively gij

b( ) and gi
ab( ). The two BECs are also coupled via a two-

photon Raman term Ω.
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Note that the off diagonal terms % ≠i j are due to the coupling between the hyperfine sub levels 
≠gi j
b( ). We mention 

that the previous system can be easily generalised to a non-uniform trapping potential. In this case it can be 
solved via numerical methods.

Polarons in two components BEC in the absence of Raman Coupling. In the absence of Raman 
coupling (Ω = 0), the system of differential equations (1) can be decoupled by expressing the deformations θi in 
terms of new effective deformations θ ′i , defined in equation (14) in Methods. These are described by two separate 
modified Helmholtz equations whose solutions, expressed in terms of Green functions are

∫θ η ρ′ ′ ′′ = −± ± ±dr r r r r( ) ( , ) ( ), (3)K G

where the explicit form of the constants ±#  is given in equation (16). Hereafter we assume both the optical lattice 
and the two component BEC to be one-dimensional.  In this  case the Green function is 
� η η− ′ ≡ − − ′

η± ±
±

x x x x( , ) exp( )1
2

56 and, assuming equal densities for the hyperfine BEC levels (i.e. 
n0A = n0B = n/2) the effective healing lengths take the form
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For an impurity trapped in an effective one-dimensional deep lattice ρ(x) is a gaussian function and (3) can be 
analytically integrated. The explicit expressions of the effective deformations, θ ′ = σ ηx x( ) ( )i i , i

K F  (i = ±), are given 
in equation (15) and equation (16) in Methods.

To obtain quantitative results, we consider a mixture of two hyperfine states of 87Rb with equal density 
n0i = 1 m m−1, interacting with impurity atoms of 41K, trapped in a deep one-dimensional optical potential. Such 
system has been realised in ref. 12 for a single BEC. The typical lattice spacing is a = λ/2 = 532 nm46, which results 
in a recoil energy of . × −�E J1 34 10R

30 . For the impurities we assume gaussian Wannier wavefunctions 
ρ πσ σ= − −x x x( ) (1/ )exp( ( ) / )2

0
2 2  whose width σ can be tuned varying the depth of the optical potential21. In 

the following σ .�a/ 0 15, to avoid direct interaction between two impurities placed in neighbouring sites and to 
suppress tunnelling effects, obtained with a longitudinal trapping frequency of ω π �/2 18L  kHz. The coupling 
constants of the two component BEC are assumed to be . × −�g J m2 08 10AA

b( ) 37 , × . × −g J m2 03 10AB
b( ) 37  and 

. × −�g J m1 99 10BB
b( ) 37 . These values are obtained scaling the 3D scattering lengths57, 58 to the 1D case following59 

and using the transverse trapping frequency (ω π⊥ �/2  34 kHz) as in ref. 12 to ensure the one-dimensionality 
condition �m ω⊥ �/ 1i

b( ) 60. The condition �ω⊥ � k TB  ensures that there are no transverse excitations due to ther-
mal effects. In our case for �T nK30  is ω⊥ �k T/ 10B

2� 61. We show in the Supplementary Material how the static 
polaron description can be further extended in presence of excitations, (e. g. when T ≠ 0).

Finally the coupling constants between impurity atoms and BEC are assumed to be both of the order of 
�g g10i

ab
AA

ab( ) ( ) in agreement with values in refs 12, 62.
Let us stress that, as can be seen from (4), the effective deformation widths di = 1/ηi do not depend on the 

impurities but only on the BEC physical parameters. Indeed the presence of the impurity atom creates a localised 
potential acting on the - otherwise homogeneous - BEC. The size of deformation so generated is of the same order 
of magnitude of the healing length, as one expect, given that the Green function, whose spatial extension is the 
healing length, is the solution of (1) for a delta-like source.

On the other hand the deformation depths are proportional to #i in equation (16), and depend also on the 
coupling constants of the impurity atoms. In other words the depth of the effective deformations can be controlled 
for instance by using Feshbach resonances on impurity atoms (as in ref. 12) or, limited to the static case, with 
confined-induced resonances63.

Once we have the explicit expressions for the effective condensate deformations, we can evaluate the interac-
tion energy between impurities and the system of BECs, using equation (13). The ground state energy can be 
written as the sum of the energy of the system of two unperturbed BECs interacting with the impurity atoms plus 
an additional term due to the interaction of the impurities with the order parameters’ deformations. The latter 
allows an effective interaction between impurities mediated by the BEC. For a system of impurities immersed in 
the optical lattice the ground state energy is = ∑ + ∑ ∑=±E A n B G n nGP m m i m l i m l

i
m l0 , , , where m, l run over lattice 
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sites and nm, nl are the mean number of impurities and ∫ η χ χ≡ ′ − ′ || | | ′ |G dxdx x x x x( , ) ( ) ( )m l
i

i m l,
2 2� . Here χm(x) 

are Wannier functions of the optical lattice, which shows clearly how the correction to the ground state energy is 
due to an effective interaction between the impurities mediated by the condensates’ deformations. The expres-
sions for coefficients A0 and Bi are explicitly shown in Eq. (17) of Methods. We obtain explicit analytic expressions 
in a deep 1D optical potential with gaussian Wannier functions. For a single impurity atom fixed at the origin of 
the coordinate system we find

∑ η
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Since A0 is the ground state energy with no deformations, − − .�E A E7 9GP
one

R0 , for = =g g g10A
ab

B
ab

AA
b( ) ( ) ( ), rep-

resents the interaction energy between the impurity and the effective deformations, namely the binding energy of 
the polaron. In the same way one obtains the ground state energy for two impurities, fixed in x1 and x2 respec-
tively, as a function of their relative distance d = |x1 − x2|. When d is infinity the ground state energy is E2 GP

one, as 
one expects for two non interacting impurities. The variation ∆E(d) with respect to its value at infinite distance is 
an effective interaction potential between the two impurities, which turns out to be
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As it is clear in Fig. 2 (right), where we consider two impurities with =g g10j
ab

AA
b( ) ( ), such effective interaction is 

attractive. We also study in Fig. 2 (left) and (centre) how the interaction energy depends on the ratio between the 
coupling constants by fixing =g g10B

ab
AA

b( ) ( ) and varying =g g gA
ab

B
ab( ) ( ) in the range g ∈ [−2, 2].

Therefore we find that for two impurities immersed in a BEC mixture the effective attractive interaction can 
be modulated by controlling the ratio between the coupling constants between the impurity atoms and the two 
BEC components. We highlight that by varying the ratio between the coupling constants gj

ab( ) one controls only 
the strength of the effective interaction while the spatial extension is unaffected. We find that the strongest effective 
interaction is reached when the coupling constants gj

ab( ) have opposite sign.
Since we are interested only in the effective interaction between the impurities mediated by the BEC mixture, 

in our analysis (Fig. 2) we have not included the interaction energy due to the direct overlap between the impurity 
wavefunctions when they are in the same lattice site.

Polarons in Presence of Raman Coupling. A much richer physics appears when one introduces a Raman 
coupling between the two hyperfine levels |a〉 and |b〉, Fig. 6, described by the extra Hamiltonian Raman term of 
equation (18). Indeed is clear from equation (2) that this affects the BEC coupling constants gij

b( ), introducing a 
further parameter for tuning the effective interaction between polarons.

A first clear effect of the Raman coupling is to modify both the depths and the widths of the effective deforma-
tions. The widths change as di = 1/ηi, where ηi are the effective Raman coupling dependent healing lengths in (4)
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which show a clear dependence on the Rabi coupling strength Ω. For Ω → 0 we obtain the same result as in (4), 
while for strong coupling Ω | |� g nij  we find

Figure 2. Energy for two impurity atoms as a function of their relative distance d (in lattice spacing a = λ/2 
units) and as a function of =g g g/A

ab
B

ab( ) ( ) (left). Slice of the 3D plot at the fixed distance d = a showing how the 
interaction between two impurities in two neighbouring sites can be modulated by varying g (centre). (right) 
Energy for two impurity atoms as a function of their relative distance d (in lattice spacing a = λ/2 units) for 
g = 1.
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This means that above a threshold value Ωlim of the laser Rabi frequency the width of one effective deformation 
tends to a constant value while the width of other one goes to zero. The threshold value does not depend on the 
impurity atoms parameters and is equal to
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In our system we obtain πΩ �/2 615lim  Hz. In Fig. 3 we show how the effective deformations’ widths 
di = 1/ηi(Ω) as a function of the Raman coupling strength (equation (7)). To find the effect of the Raman coupling 
on the BEC deformations we proceed, as before, by solving the system (1) with coefficients (2) but now with 
Ω ≠ 0.

For two BECs with the same density n0i = n/2, in the 1D case, the effective deformations become 
K Fθ ′ = σ η Ωx x( ) ( )i i

las
, ( )i

 where the σ η x( ), i
�  and the constants i

las#  are given explicitly in equation (15) and equation 
(20), which depend both on the impurity atoms and the BEC coupling constants. We show in Fig. 3 how the effec-
tive deformations depths change due to the Raman coupling. The ground state energy of the system is obtained 
with the same technique discussed above. For a single impurity immersed in a deep 1D optical lattice we find
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where ηi ≡ ηi(Ω) (see equation (7)). For a system of two impurities the ground state energy as function of their 
relative distance is (we set the zero of energy for d → ∞):

! L∑∆ Ω = ∆ Ω − Ω
σ η η

=±
Ω Ω− +

E d E d d( , ) ( , )
2

( )
(11)

Ram

i
i , ( ), ( )

where ∆Ei(d, Ω) are obtained from the equation (6) with the substitution ηi → ηi(Ω) defined in equation (7) while 
the term $σ η ηΩ Ω d( ), ( ), ( )A B

 represents the direct coupling of the condensate deformations due to the laser. This latter 
term, whose explicit form is shown in equation (22) of Methods and equation (23), turns out to be negligible 
compared to ∆Ei(d, Ω). In Fig. 3 (right) the two energy contribution ∆Ei in equation (11) are shown as function 
of the Raman coupling, in energy recoil units, for relative distance d = 0 and =g g10B

ab
AA

b( ) ( ), = −g g2A
ab

B
ab( ) ( ). It can 

be seen clearly that the effect of the Raman term is to modulate the effective interaction between the two impurity 
atom, which decreases for large values of Ω.

In Fig. 4 we study in detail how the Raman strength influences the effective interaction between two impurity 
atoms, for fixed value of the ratio between the coupling constants =g g g/A

ab
B

ab( ) ( ). We show in Fig. 4 (left) that if 
the distance between the impurities is fixed to d = 0, the Raman term allows one to modulate the effective inter-
action in a wide range. More remarkably, when the two impurities are placed in different sites, the Raman cou-
pling allows one to completely turn off the effective polaron mutual interaction. As shown in Fig. 4 (centre) the 
effect is more pronunced when the impurity-BEC coupling constants gj

(ab) have opposite sign. Specifically in Fig. 4 
(right) we plot the effective interaction for two impurities with relative distance of one lattice site d = a (black 
line), and two sites d = 2a (blue line), for = = −g g g/ 1A

ab
B

ab( ) ( ) .

Figure 3. Raman controlled effective deformations of the BEC order parameter: width of the effective healing 
lengths dj(Ω) = 1/ηj(Ω), normalised for the value in absence of Raman coupling (left). Depth of the effective 
deformations as a function of the Raman coupling (centre). Contribution of each effective deformation to the 
system energy ∆Ei(Ω), equation (11), in recoil energy units ER (right). The value of the threshold Raman 
coupling, equation (9) is �Ω .� E0 61 Rlim . (We have assumed the following values: = −g g2A

ab
B

ab( ) ( ) where 
=g g10B

ab
AA

b( ) ( ) and relative distance between impurities set to d = 0.)
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Therefore by a suitable choice of the Raman coupling i.e. of the external laser field intensity, one can tune the 
polaron effective interaction potential from attractive to zero. Such behavior is due to the combined effect of the 
increase of the density and the reduction of the size of the effective deformations near the position of the impurity 
atoms.

The laser term changes the effect of the coupling constants gij
b( ) on the effective deformations of the BEC as it 

can be seen in equation (2), which consequently allows tuning the interaction between impurities. To better 
understand the physics underlying our scheme, we evaluate the effect of the Raman coupling on the real deforma-
tions θA(x), θB(x) by using equation (14). In Fig. 5 we plot the depth of the BEC deformations θj(x = 0, Ω) as a 
function of the Raman strength Ω in the position of the impurity x = 0. We observe that if the coupling constants 
between impurity and the two BEC component have opposite sign (Fig. 5 (left)) the Raman term reduces the 
depth of the deformations, which effectively allows a tunability of the polaron binding energy and of the effective 
interaction between two impurities immersed in the system. On the other hand, if the coupling constants have the 
same sign, Fig. 5 (right), the Raman term has a weaker effect on the tunability of the system.

2*#C&",-*#
We have analysed the properties of polarons which originate from the coupling of atomic impurities with a two 
component BEC. We show how the polaron-polaron interaction can be tuned by acting on the coupling constant 
values between impurities and a two component BEC.

Moreover we find that a suitable Raman coupling between the hyperfine levels of the BEC allows tuning 
the effective potential which describes the polaron-polaron interaction. Specifically we found that the range of 
tunability depends on the ratio between the coupling constants between impurity and BEC, which is maximised 
when the coupling with the two BEC component has opposite sign. More remarkably we find that the Raman 
term can switch the effective interaction from attractive to zero for impurities in different sites. Our proposal is 
within the state of the art of experimental realisation and could be probed by using radio-frequency spettroscopy 
techniques14, 64–66, already employed for impurity atoms in a single BEC environment.

Our study opens the way to new exciting questions in the controlled many-body dynamics and thermodynam-
ics of ultracold atomic mixtures, including issues of thermalisation, dissipative preparation of strongly-correlated 
states and observation of new exotic phases in systems of many polarons.

Figure 4. Raman controlled effective interaction between two impurity atoms: ∆ERam(d, Ω) as function of the 
Raman laser coupling ħΩ and of the ratio of the impurity-BEC coupling constants =g g g/A

ab
B

ab( ) ( ) and 
=g g10B

ab
AA

ab( ) ( ). The Raman strength is in recoil energy units. The relative distance d = |x1 − x2| between the 
impurities is fixed to d = 0 (left), d = a (centre), where a = λ/2 is the lattice spacing. (right) ∆ERam(d, Ω), 
respectively for d = a (black line) and d = 2a (blue line)with g = −1, as a function of the Raman coupling 
strength.

Figure 5. Effect of the Raman coupling on the real deformations: Depth of the real deformations θj(x = 0, Ω), in 
the position of the impurity, x = 0, as a function of the Raman coupling Ω for (left) = − = −g g g10A B AA

ab( ) and 
for (right) = =g g g10A B AA

ab( ).
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?'1;*3,

The system Hamiltonian is = + +à à à àH H H Ha b ab where a and b label respectively the impurity and the BEC atoms 
and where

∫

∫

∫
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Here χà r( ) and ψ Ü r( )i  are respectively the impurity field operator and the BEC field operators, with i = A, B labelling 
the two BEC component and gij

b( ) and gi
ab( ) are the interspecies and intraspecies pseudo-potential coupling con-

stants. The chemical potentials of the impurity and the BECs are labeled respectively with m (a) and m i
b( )m i

(b).
In an optical potential, once the impurity field operator is expressed in terms of Wannier functions χi(r) cen-

tred around the lattice site i as χ χ= ∑à àar r( ) ( )i i i, the impurities’ Hamiltonian àHa is described by a Bose-Hubbard 
mo del 2.  For  a  deep latt ice  p otent ia l  impur it ies  are  descr ib ed by  the  average  dens ity 
ρ χ χ χ= = ∑à àÜ Ü nr r r r( ) ( ) ( ) ( )i i i

2, where ni is the average number of impurities in site i, and the Wannier func-
tions are gaussians17, 21.

A static polaron is obtained with a deep optical potential in which the hopping dynamics is suppressed17, 21. A 
mean field description of the two component BEC is formally obtained substituting the field operator ψà r( )i  with 
the unperturbed order parameters plus a linear correction due to interaction with impurities 
ψ ψ θ→ +à r r r( ) ( ) ( )i i i0

17, 21. For real ψ0i(r) ed θi(r) we find

∫

∫

∑ ∑

∑ ∑

ψ m ψ ψ ψ ψ

ρ ψ ρ ψ θ
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where �≡ − ∇ +H m U r( )/(2 ) ( )b0
2 2 . For a shallow trap U(r) = 0 and the unperturbed BEC wave functions ψ0i(r) 

are constant and real55. Using the stationarity condition δHGP/δθ0i = 0 we obtain a system of coupled differential equa-
tionsfor the deformations θi(r) (Equation (3) in the main text). Defining S the transformation matrix that diagonalises 
� in (2) we obtain a decoupled system of two modified Helmholtz equations in the base of effective deformations

 θ θ θ θ′ ′ = −( , ) ( , ) (14)A B
T

A B
T1

The explicit expressions for the effective deformations in a one-dimensional two component BEC with no Raman 
coupling are θ ′ = σ η±x x( ) ( )i , i

K F  where

η
η η σ

η σ
σ

η η σ
η σ

σ

≡
⎧
⎨⎪⎪
⎩⎪⎪

⎡
⎣
⎢
⎢

+ ⎤
⎦
⎥
⎥

⎛
⎝
⎜⎜ + ⎞

⎠
⎟⎟⎟

+ ⎡
⎣
⎢
⎢

− ⎤
⎦
⎥
⎥

⎛
⎝
⎜⎜ − ⎞

⎠
⎟⎟⎟
⎫
⎬⎪⎪
⎭⎪⎪

σ η x x

x x

1
4

exp 1
4

( 4 ) Erfc
2

exp 1
4

( 4 ) Erfc
2 (15)

i
i i

i

i i
i

,
2

2

i
#

Figure 6. Raman coupling in a Λ system: three hyperfine levels of 87Rb are coupled by two laser fields with 
frequency ω1, ω2 and Rabi frequency Ω1 and Ω2. Here ∆ represents the common detuning with the state |e〉, 
while ∆HF is the energy difference between the hyperfine levels |a〉 e |b〉.
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b
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0
( ) ( ) 2 ( ) 2 1/2. The ground state energy of a system of impurities interacting with the two 

component BEC is obtained using (14) in (13). In particular, taking into account only terms containing ρ(r), for 
BECs with the same density, n0i = n/2 we obtain the following value for the coefficients A0 and Bi
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2
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Here we define kA ≡ k− and kB ≡ k+, where we introduce the constants β≡ − ±±k g g g( )/AA
b
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b( ) ( )

0
( ) and 
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i j B
ab( ) 2
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( ) ( ) .

Mean-Field Description With Raman Term. We introduce an external coupling term between the two 
BECs hyperfine level in |a〉 and |b〉 the form of Raman coupling as shown in Fig. 6. Here ωi and Ωi are respectively 
the laser frequency and the Rabi frequency. For a large enough detuning ∆ the hamiltonian can be cast in the fol-
lowing mean field effective hamiltonian by adiabatically eliminating the excited level |e〉51–53. When ω2 = ω1 the two 
BECs’ population remain constant in time53, 54, and defining the Raman coupling strength Ω ≡ 4Ω1Ω2/∆ we have

∫ ψ ψ ψ ψ= − Ω +à à à à àÜ Ü( )H dr r r r r
2

( ) ( ) ( ) ( ) (18)Ram A B B A
�

Hence the total hamiltonian of the system is = + + +à à à à àH H H H Ha b ab Ram. Separating the contributions describ-
ing the uniform unperturbed condensate and the deformation induced by the impurity we find the mean field 
description adding the term
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to the mean field description (13). The effective deformations with the Raman coupling term are 
θ ′ = σ η±x x( ) ( )i
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, i
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b( ) ( ) 2 2 ( ) 2� . As shown in the main text we find the ground state energy as 

function of the relative distance and the Raman coupling strength Ω for a system of two impurities in a deep 1D 
optical lattice. Explicitly, assuming gaussian Wannier wavefunctions, we solve the integral
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