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We provide an analytic solution to the problem of system-bath dynamics under the effect of high-
frequency driving that has applications in a large class of settings, such as driven-dissipative many-body
systems. Our method relies on discrete symmetries of the system-bath Hamiltonian and provides the time
evolution operator of the full system, including bath degrees of freedom, without weak-coupling or
Markovian assumptions. An interpretation of the solution in terms of the stroboscopic evolution of a family
of observables under the influence of an effective static Hamiltonian is proposed, which constitutes a
flexible simulation procedure of nontrivial Hamiltonians. We instantiate the result with the study of the
spin-boson model with time-dependent tunneling amplitude. We analyze the class of Hamiltonians that
may be stroboscopically accessed for this example and illustrate the dynamics of system and bath degrees
of freedom.
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Introduction.—An external driving breaks continuous
translational invariance in time, which is associated with
lack of energy conservation. In a seminal paper [1], Shirley
showed that, in the case of a periodically driven quantum
system, the discrete translational symmetry in time can be
exploited to derive a theory analogous to the Bloch theorem
in condensed matter. Despite the lack of energy conserva-
tion, one can still introduce a stroboscopic conserved
quantity referred to as the quasienergy—similar to the
quasimomentum in condensed matter. In Floquet theory,
extension of the original Hilbert space of square integrable
functions with one of periodic functions in time [2]
facilitates the identification of additional symmetries of
the system that emerge as a consequence of the driving.
Driving-induced symmetries are a powerful tool in the

theory of driven quantum systems [3–10]. Among various
applications, it becomes possible to define a generalized
parity symmetry in the extended Hilbert space of a driven
qubit such that quantum degeneracies are exploited to
suppress tunneling in a coherent manner [6,7]. This has
important consequences in the context of driven open
quantum systems [3,11–20], where a nontrivial interplay
of time dependent fields and dissipation takes place.
Up until now, the study of periodically driven open

quantum systems has relied heavily on the Floquet-
Markov [3,15–18] approach. This approach consists in
deriving a weak coupling Born-Markov master equa-
tion [21,22] in the Floquet basis of the driven system.
Conditions under which periodically driven open quantum
systems thermalize have also been studied recently
[23,24]. Besides this approach, there is an obvious interest
in reaching beyond the weak coupling regime and the
Markovian approximation.

In this Letter, we provide an analytic solution of a driven
open quantum system based on a perturbative expansion up
to first order with respect to the period of the driving. The
solution is valid in strong-coupling and non-Markovian
scenarios [25–27] and suits a large class of systems
provided that the general system-bath Hamiltonian has
certain driving-induced discrete symmetries. In particular,
this may also be used for the study of driven-dissipative
many-body systems.
With the analytical solution at hand, it is possible to

interpret the evolution in terms of a stroboscopic sampling
of a class of observables under the effect of a static,
effective Hamiltonian. For open quantum systems, this may
involve both system and bath degrees of freedom. Because
of growing interest in quantum simulation of open systems
by means of driven control [28,29], this insight opens up
an exciting new path of exploration. In this Letter we
first present the solution, specify the conditions required
for its application, and propose a way to simulate static
Hamiltonians of open quantum systems, based on the
stroboscopic description of driven systems. We then apply
our results to the spin-boson model, which is a paradig-
matic model in the theory of open quantum systems
[20–22,30].
Floquet theorem and high frequency expansions.—The

suitability of the Floquet theorem for the study of
periodically driven systems has been extensively estab-
lished [1,3–5]. In its most general form, it states that
the evolution operator associated with a time-dependent
periodic Hamiltonian Ĥðtþ TÞ ¼ ĤðtÞ can be decom-
posed as

Ûðt; t1Þ ¼ e−iK̂
F
t0
ðtÞe−iĤ

F
t0
ðt−t1ÞeiK̂

F
t0
ðt1Þ; ð1Þ
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where K̂F
t0ðtÞ is the stroboscopic kick operator and ĤF

t0
is the Floquet Hamiltonian. The parametric time
dependence t1 ≤ t0 ≤ t1 þ T is associated with the start
of the stroboscopic evolution. The stroboscopic kick
operator inherits the periodicity of the Hamiltonian
ĤðtÞ, such that Ûðt0 þ nT; t0Þ ¼ e−iĤ

F
t0
nT , with n an

integer and K̂F
t0ðt0Þ ¼ K̂F

t0ðt0 þ nTÞ ¼ 0.
With the exception of some simple systems, it is

impossible to find a closed form for the Floquet
Hamiltonian and the stroboscopic kick operator.
Nevertheless one may resort to high frequency expansions
(HFEs) [4,5,31–37] such as the well known Floquet-
Magnus expansion [35–37]. The HFE is defined as a
power series in 1=ωL, where ωL is the frequency of the
driving. This makes ωL the dominant energy scale of the
system, since it has to remain larger than any energy scale
of the undriven model to support a suitable truncation
of the HFE [4,5]. It is possible to define a unitary trans-
formation that completely removes the dependence of t0
from the HFE [4,5]. This defines the kick operator K̂ðtÞ and
the effective Hamiltonian ĤF so that Eq. (1) may be
rewritten as

Ûðt; t1Þ ¼ e−iK̂ðtÞe−iĤ
Fðt−t1ÞeiK̂ðt1Þ: ð2Þ

Note that, unlike the Floquet Hamiltonian, the effective
Hamiltonian ĤF does not necessarily generate the strobo-
scopic evolution of the system, since K̂ðt0Þmay not vanish.
Expansions up to first order for both forms [Eqs. (1) and
(2)] can be found in the Supplemental Material [38]. The
effective or Van Vleck expansion [4,5] based on Eq. (2)
takes an especially simple form which may be exploited in
the analytical derivation of the evolution operator of a large
class of systems.
Analytical solution.—We consider a system-bath

Hamiltonian of the form

ĤðtÞ ¼ ĤSðtÞ þ ĤB þ Ŝ X̂; ð3Þ

where ĤSðtÞ ¼ ω0Ŝþ A cosðωLtÞV̂ is the Hamiltonian of
the system and Ŝ and V̂ are time independent operators.
Correspondingly, A is the amplitude and ωL is the fre-
quency of the external driving with period T ¼ 2π=ωL. The
operator ĤB ¼

PN
k¼1 ωkâ

†
kâk is the Hamiltonian of the bath

with N modes, X̂ ¼
PN

k¼1 gkðâ
†
k þ âkÞ, and â†k, âk creation

and annihilation operators of the bath. The case where
A ¼ 0 can be solved analytically since it is a dephasing-
type model [21,22], where the populations of the system
remain stationary while the coherences decay. The external
driving breaks the integrability of the model, but it also
generates new symmetries in the Sambe space [2]. For
example, the Hamiltonian of Eq. (3) is invariant under

t ↦ −t, and the combined action of the transformations
t ↦ tþ T=2 and V̂ ↦ −V̂.
We now briefly explain how to obtain an analytical

form of the reduced density matrix of the system from
Hamiltonian Eq. (3). For further detail, the reader is
referred to the Supplemental Material [38]. We begin
by going to a rotating frame defined by operator ÛðtÞ ¼
e−iðA=ωLÞ sinðωLtÞV̂ . On this frame, up to first order in 1=ωL
and due to the symmetries of the driving, the effective
Hamiltonian and kick operator have the form

ĤF ¼ Ŝð0Þðω0 þ X̂Þ þ ĤB; ð4Þ

K̂ðtÞ ¼ M̂ðtÞðω0 þ X̂Þ; ð5Þ

where M̂ðtÞ ¼
P∞

l≠0 Ŝ
ðlÞðeilωLt=iωLlÞ and ŜðlÞ is the

l-Fourier component of operator Ŝ in the rotating frame.
Based on the particular form of Eqs. (4) and (5) and

decomposition [Eq. (2)], the evolution operator in the
rotating frame can be seen as the product of three
system-state-dependent displacement operators (polaron-
type transformations) and some time-dependent phases.
With the help of the spectral decomposition of system
operators Ô into projectors Pm

O ¼ jOmihOmj associated
with each eigenvalue fOmg, the evolution operator
Ûðt; 0Þ ¼ ÛðtÞÛRðt; 0Þ of Eq. (2) can be written in terms
of the propagator in the rotating frame

ÛRðt; 0Þ ¼
X

n

e−iΩnðtÞeiIm½χnðtÞ&e−iHBtĜnðtÞD̂½ΛnðtÞ&. ð6Þ

The multi-index n ¼ ðn1; n2; n3Þ labels the eigenstates of
the operators M̂ðtÞ, Ŝð0Þ and M̂ð0Þ, respectively.
ĜnðtÞ ¼ Pn1

MðtÞP
n2
Sð0Þ

Pn3
Mð0Þ is the product of three system

projectors and the displacement operator is defined by

D̂½μ& ¼ e
P

N
k¼1

μka
†
k−μ

'
kak , where μ ¼ ðμ1;…; μNÞ. As a result

of the product of the polaron-type transformations in
Eq. (2), we obtain a net displacement of the bath ΛnðtÞ ¼
αn1ðtÞ þ ϑn2ðtÞ − αn3ð0Þ and the complex phase by
χnðtÞ ¼ αn1ðtÞ · ϑ

'
n2ðtÞ − ½αn1ðtÞ þ ϑn2ðtÞ& · α

'
n3ð0Þ, with

αmk ðtÞ ¼ −iMmðtÞgkeiωkt and ϑn2k ðtÞ ¼ ðSð0Þn2 gk=ωkÞ
ð1 − eiωktÞ. Additionally, we have defined the time-
dependent phase ΩnðtÞ ¼ ω0½Mn1ðtÞ þ Sð0Þn2 t −Mn3ð0Þ&−
ηn2ðtÞ, where ηn2ðtÞ¼ðSð0Þn2 Þ

2PN
k¼1ðgk=ωkÞ2ðωkt−sinωktÞ.

This is a general treatment and could be used in a large
variety of situations beyond the scope of this Letter due to
the arbitrariness in the form of operators Ŝ and V̂ in Eq. (3).
In the rotating frame, the density matrix describing the

dynamics of both the system and the bath has the form
ρ̂ðtÞ ¼ ÛRðt; 0Þρ̂ð0ÞÛ†

Rðt; 0Þ. Our approach allows us to
calculate the time evolution of any initial state of the total
system. For simplicity, we take ρ̂ð0Þ ¼ ρ̂Sð0Þ ⊗ ρ̂Bð0Þ,
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where ρ̂Bð0Þ ¼ e−βHB=Zβ is a thermal state, Zβ ¼
Trðe−βHBÞ the partition function, and β ¼ 1=Tβ the inverse
temperature. The reduced density matrix of the system
obtained by tracing out the bath is

ρSðtÞ ¼
X

n; ~n

eiθn; ~nðtÞe−δn; ~nðtÞĜnðtÞρSð0ÞĜ†
~nðtÞ; ð7Þ

where θn; ~n ¼ Ω ~n −Ωn þ ImðχnÞ − Imðχ ~nÞ þ Im½Λn · Λ'
~n&.

The dissipative effects of the bath on the system are
contained on δn; ~n ¼ 1

2

PN
k¼1 jΛn

k − Λ ~n
k j2 cothðβωk=2Þ. The

explicit derivation of the reduced density operator of Eq. (7)
is discussed in the Supplemental Material [38].
Application to the spin-boson model.—In this section we

apply our formalism to the spin boson model [Fig. 1(a)]

ĤðtÞ ¼ ω0σz þ A cosðωLtÞσx þ ĤB þ σzX̂; ð8Þ

which is a paradigm of quantum dissipation [18–22,30].
Whereas we present an analytical solution, previous works
have numerically explored the dissipative dynamics of the
spin boson model with a monochromatic driving on the
bias term proportional to σz. In this case, signatures of
coherent destruction of tunneling appear in the dynamics of
the population inversion hσzi both in the Markovian [18] as
well as in the non-Markovian [19] regimes.
From Eq. (3) we can identify the operators Ŝ ¼ σz and

V̂ ¼ σx. After some algebra, we can write the operator
M̂ðtÞ ¼ ftσz − htσy appearing in Eq. (5), where ft ¼P∞

m¼2 J mð2A=ωLÞ½2 sinðmωLtÞ=mωL& for even m, and
ht ¼

P∞
m¼1 J mð2A=ωLÞ½2 cosðmωLtÞ=mωL& for odd m.

In these expressions, J lðxÞ is the lth order Bessel function
of the first kind. The convergence of the results presented
below was extensively tested by means of comparison with
numerically exact solutions computed with the hierarchy of
equations of motion [39].
Up to first order in 1=ωL, the quasienergies of the driven

spin are given by the eigenvalues of the effective
Hamiltonian Eq. (5) with X̂ ¼ 0. Therefore, the zeros of
the Bessel function J 0ð2A=ωLÞ determine the occurrence
of degeneracies in the Floquet spectrum as a consequence
of the parity symmetry t ↦ tþ T=2 and σx ↦ −σx in the
extended Hilbert space. In the context of driven quantum
systems, this phenomenon is known as coherent destruction
of tunneling or dynamical localization [3,6]. In Fig. 1(b),
the expectation value of σz is shown for two specific values
of 2A=ωL and an Ohmic spectral density JðωÞ ¼ λωe−ω=ωc

for the bath. Although this form is used in the remainder of
the Letter, our solution is valid for an arbitrary spectral
density.
The ratio 2A=ωL may be chosen to match the zeros

(extrema) of Bessel function J 0ð2A=ωLÞ, which are
associated with minima (maxima) of the relaxation rate
of σz. The value 2A=ωL ≈ 3.83 [upper panel in Fig. 1(b)],

corresponds to the second maximum of J 0ð2A=ωLÞ, so
that the dissipative effect of the driving, in an originally
dephasing environment, can be appreciated best. Besides,
collapses and revivals characteristic of driven closed
systems are also apparent. When 2A=ωL ≈ 2.4 [lower panel
in Fig. 1(b)], the first zero of J 0ð2A=ωLÞ is matched and
the effective Hamiltonian (5) only contains the free bath
term. The evolution is then dominated by the kick operator
and the system is effectively decoupled from the environ-
ment. Therefore, σz oscillates between constant values
without decaying, thus reproducing the behavior of con-
tinuous wave dynamical decoupling setups [40–43].
Figure 1(c) illustrates the transition between the two limits,
providing evidence of the high tunability of the effect of the
driving that is available.
Effect of the first order term in 1=ωL.—Up to zeroth

order in the period (ωL → ∞) the effective Hamiltonian is

(a)

(b)

(c) (d)

FIG. 1. (a) Diagram of the spin-boson model with time
dependent tunneling amplitude ϵðtÞ ¼ A cosðωLtÞ, where the
evolution of an observable Ô due to a driven Hamiltonian
HðtÞ can be interpreted as the evolution of a continuous family
of observables Ôτ due to an effective static Hamiltonian HF

t0 .
(b) Expectation value of σz in the laboratory frame for different
amplitudes of driving strength. In the upper plot 2A=ωL ≈ 3.83
and in the lower plot 2A=ωL ≈ 2.4. Other parameters are
ωL ¼ 10ω0, ωc¼0.9ω0, λ ¼ 0.15ω0 and temperature Tβ ¼ ω0.
The system is initially in the state j−iy. (c) Density plot of the
upper envelope of expectation value σz in the lab frame as a
function of time and the ratio 2A=ωL. Same parameters as (b).
(d) Expectation value of σz in the rotating frame for different
frequencies of the driving. Blue line corresponds to ωL ¼ 10ω0,
orange to ωL ¼ 15ω0, purple to ωL ¼ 20ω0, and red to ωL → ∞,
where only the zeroth order term has an effect. Other parameters
are ωc ¼ 0.9ω0, λ ¼ 0.5ω0, Tβ ¼ 7ω0, 2A=ωL ≈ 2.4 and the
system is initially in the excited state jþiz.
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given by Eq. (4) and the kick operator vanishes K̂ðtÞ ¼ 0.
In such a case, the populations should stay constant in the
rotating frame and the observation of any population
transfer is a direct consequence of including the first order
term in our treatment. This effect is shown in Fig. 1(d),
where the expectation value of σz in the rotating frame is
depicted for a system initially in the excited state and
different values of the driving frequency ωL. As the
frequency is lowered, a crossover between a dephasing
behavior and a dissipative one can be observed. Besides the
decay of populations, there is also a presence of oscilla-
tions. Parameters are chosen to match the first zero of the
Bessel function (2A=ωL ≈ 2.4), so that in this case the
dissipative behavior is caused by the kick operator
Eq. (5) alone.
Stroboscopic simulation.—For any arbitrary observable

Ô and t1 ¼ t0 [see Eq. (1)], its expectation value at the
stroboscopic times t0n ¼ t0 þ nT is simply given in terms
of the Floquet Hamiltonian by hÔðt0nÞi ¼ hÔðt0nÞiF ≡
heiĤ

F
t0
nTÔe−iĤ

F
t0
nTi. This property can be extended to

arbitrary stroboscopic times τn ¼ τ þ nT, where t0 ≤ τ ≤
t0 þ T, with help from the continuous family of observ-
ables Ôτ ¼ eiK̂

F
t0
ðτÞÔe−iK̂

F
t0
ðτÞ. This definition allows us to

interpret the expectation value of an observable Ô at any
time τn as the evolution of observable Ôτ under the static
Hamiltonian ĤF

t0 , following hÔðτnÞi ¼ hÔτðτnÞiF. This
provides us with the opportunity to simulate static
Hamiltonians and observables by judiciously controlling
the external driving of a simpler system. We stress that
this interpretation applies in general for any periodically
driven system.
For our example of the spin-boson model, the Floquet

Hamiltonian Eq. (1) corresponding to Eq. (8) has the form

ĤF
t0 ¼ J 0

!
2A
ωL

"
σzðω0 þ X̂Þ þ ðft0σz þ ht0σyÞ

_̂X

þ 2ht0J 0

!
2A
ωL

"
σxðω0 þ X̂Þ2 þ ĤB; ð9Þ

where _̂X ¼ i½ĤB; X̂& ¼ i
PN

k¼1 gkωkðâ†k − âkÞ. In addition,
the stroboscopic kick operator Eq. (1) is given by
K̂F

t0ðtÞ ¼ ~Mt0ðtÞðω0 þ X̂Þ, where ~Mt0ðtÞ ¼ ~ft0ðtÞσz −
~ht0ðtÞσy, ~ft0ðtÞ ¼ ft − ft0 and ~ht0ðtÞ ¼ ht − ht0 . In this
Hamiltonian, the parametric freedom on A and t0 allows
us to vary the specific form of Eq. (9). In particular, the
strong coupling limit, i.e., ft0 , ht0 ∼ J 0ð2A=ωLÞ, is acces-
sible in this case, where the usual Born-Markov master
equation is not valid and polaron dynamics play an
important role. This can be assessed in the evolution of
the system observable Ô ¼ σz, whose associated continu-
ous family is σzτ ¼ eiK̂

F
t0
ðτÞσze

−iK̂F
t0
ðτÞ. This family involves

such combination of system and bath operators that its

expectation value, which ranges between −1 and þ1, can
be interpreted as a measure of polaron coherence. This can
be best understood in the case ~ft0ðτÞ≃ 0 (t0 ¼ 0 and
τ≃ 0.14=ω0), where the operator has the simple form
σzτ ¼ σze

2i ~ht0 ðτÞðω0þX̂Þσy . For a polaron state jþiyj ~hðτÞi(
j−iyj− ~hðτÞi, where D̂½ ~hðτÞ&j0i≡ j ~hðτÞi is a coherent state
of the bath with ~hkðτÞ ¼ 2i ~ht0ðτÞgk, the expectation value
of σzτ takes the extrema(1. The function ~ht0ðτÞ is a measure
of the polaron displacement from the center of the
environmental phase space.
These ideas are exemplified in Fig. 2. Figure 2(a) shows

the dynamics of observable hσzi for the driven system
Eq. (8) in a continuous blue line. The dot series correspond
to different values of the stroboscopic parameter τ, corre-
sponding to observables σzτ under the effect of the static
Hamiltonian Eq. (9). Figure 2(b) shows the evolution of the
whole family of observables as a function of time. Our
choice of parameter values corresponds to an effective
Hamiltonian with strong system-bath coupling, such that
polaron dynamics plays an important role. Indeed, for an
initial state jþiz, the system-bath state is gradually trans-
formed into the polaron associated with the observable σzτ
for τ≃ 0.12=ω0. This stroboscopic simulation provides a
unique insight into these dynamics under the whole range
of system-bath couplings. Alternative choices of t0 are
associated with additional, highly nontrivial Hamiltonians,
so that this procedure constitutes a flexible tool for the
simulation of a large class of open quantum systems.
Conclusion and outlook.—We have obtained the dynam-

ics of a driven dissipative system valid to all orders in the
system-bath coupling using a high-frequency expansion.
The driving introduces nontrivial effects on the relaxation
of populations of the system which can be accurately

(a) (b)

FIG. 2. (a) Expectation value of σz (blue solid line) for
Hamiltonian Eq. (8). Dots show the stroboscopic simulation of
static Hamiltonian Eq. (9): red dots correspond to τ ¼ 0, green to
τ ¼ π=ωL, orange to τ ¼ π=ð1.3ωLÞ. Other parameters are
ωL ¼ 11ω0, 2A ¼ 2.7ωL, λ ¼ 0.5ω0, ωc ¼ 1.3ω0, Tβ ¼ 3.5ω0,
and t0 ¼ 0. The system is initially in the excited state jþiz.
(b) Density plot of the stroboscopic simulation of σz as a function
of the stroboscopic parameter τ and time t. For each τ, time can
only take discrete values τ þ nT, and an interpolation between
dots has been applied. Parameters as in (a).
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controlled by choice of the driving parameters. Our
approach goes beyond usual studies based on the weak
coupling master equation and Markovian regime. Based on
this solution, we also proposed a method to simulate the
dynamics of nontrivial static Hamiltonians for strong and
weak coupling regimes. Our method can be generalized to a
large class of driven-dissipative systems. Just to mention
some examples, in quantum optics, the Eq. (3) is a driven
Rabi Hamiltonian for N ¼ 1. Its multimode version with
N > 1 can be realized in circuit QED [44]. In cavity
optomechanics, one can use Ŝ ¼ b̂†b̂ and V̂ ¼ b̂† þ b̂ to
investigate non-Markovian effects on continuous variable
quantum state processing [45]. In the context of many-body
systems, we anticipate that our method can be used as a
platform to simulate systems with exotic effective inter-
actions due to the effect of driving.
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