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Few-photon transport in many-body photonic systems: A scattering approach
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We study the quantum transport of multiphoton Fock states in one-dimensional Bose-Hubbard lattices
implemented in QED cavity arrays (QCAs). We propose an optical scheme to probe the underlying many-body
states of the system by analyzing the properties of the transmitted light using scattering theory. To this end, we
employ the Lippmann-Schwinger formalism within which an analytical form of the scattering matrix can be found.
The latter is evaluated explicitly for the two-particle, two-site case which we use to study the resonance properties
of two-photon scattering, as well as the scattering probabilities and the second-order intensity correlations of the
transmitted light. The results indicate that the underlying structure of the many-body states of the model in question
can be directly inferred from the physical properties of the transported photons in its QCA realization. We find that
a fully resonant two-photon scattering scenario allows a faithful characterization of the underlying many-body
states, unlike in the coherent driving scenario usually employed in quantum master-equation treatments. The
effects of losses in the cavities, as well as the incoming photons’ pulse shapes and initial correlations, are studied
and analyzed. Our method is general and can be applied to probe the structure of any many-body bosonic
model amenable to a QCA implementation, including the Jaynes-Cummings-Hubbard model, the extended
Bose-Hubbard model, as well as a whole range of spin models.
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I. INTRODUCTION

Recent advances in quantum nonlinear optics and circuit
QED systems [1,2] have allowed the engineering of photon-
photon interaction to the extent that strongly interacting
photons have started to be considered as a potential platform
to simulate many-body phenomena [3–6]. Early proposals
discussed the possibility to realize strongly correlated states of
photons and polaritons in coupled QED cavity arrays (QCAs)
[7–9]. Their natural advantage in local control and design, and
possibility to probe out-of-equilibrium phenomena in driven
dissipative regimes, has allowed QCA-based approaches to
complement the efforts towards viable quantum simulators
[10–18]. Experimentally, in spite of various challenges,
progress has been recently made with small-scale QCAs
successfully fabricated in semiconductor- and superconductor-
based setups [19–21]. Strongly interacting photons have also
been created in Rydberg media [22].

A QCA, beyond its many-body character, is inherently a
(quantum) optical system, and thus is naturally probed by light
scattering [23]. Performing quantum measurements on the
output (transported or scattered) light, one obtains information
about the underlying properties of the system [24]. In the study
of QCA simulators, the driving source has so far mostly been
taken to be a coherent field of light described within a quantum
master-equation formalism. The latter approach, although it
successfully captures the open nature of the system, is often
limited to coherent-light drives (recently a method to derive
a master equation for the Fock-state input has been found in

*changdolli@gmail.com
†undefying@gmail.com
‡dimitris.angelakis@gmail.com

[26]). This semiclassical treatment misses, in our opinion, an
important regime of input quantum particles being transported
in the system. How does a QCA many-body simulator react
to general quantum input fields? Can we collect information
on the states of the many-body models simulated by studying
the transported or scattered quantum particles (photons) from
a QCA?

To answer this question, we employ the Lippmann-
Schwinger formalism, whose use in quantum optical systems
was pioneered by Shen and Fan [27] and has led to numerous
further developments [28–40]. In the context of quantum
simulations of many-body phenomena, using an N -photon
Fock state as the input field for an N -site cavity array seems
promising. As a first step towards this goal, we examine the
process of scattering two photons on an array of coupled Kerr
nonlinear resonators whose dynamics are described by the
Bose-Hubbard model. We first evaluate the scattering matrix
analytically for the case of two resonators coupled to input and
output waveguides, and then use it to calculate the scattering
probabilities and the second-order correlations between the
scattered photons. The results indicate that the structure of
the correlated many-body states is more clearly reflected in
the scattered light fields when the individual input photon or
particle energies are fully resonant with the corresponding
eigenstates (see Fig. 1).

II. FEW-PHOTON TRANSPORT

Consider a one-dimensional array of N coupled nonlinear
cavities, where the cavities at both ends are coupled to
waveguides supporting propagating photons, as shown in
Fig. 1(a). The system is described by the Hamiltonian

Ĥtot = Ĥwg + Ĥcc + Ĥwc,
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FIG. 1. (Color online) (a) Proposed method to probe the structure
of bosonic many-body models as implemented in QCA simulators.
Photons traveling in the left waveguide are injected into the array
and are transported through the device to the right waveguide. In
this work, the QCA is assumed to realize the Bose-Hubbard model,
but other models such as the Jaynes-Cummings-Hubbard model, spin
models, or the extended Bose-Hubbard model can also be realized
[9,17]. The injected photons scan through the many-body eigenstates
of the simulated model and if they are fully resonant to the many-body
states as illustrated in (b), then the full information of the relevant
states is mapped out faithfully in the output spectra and correlation
functions.
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ĉL(x)

]

+ !
∫ ∞

−∞
dy

[
− ivgĉ
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ĉR(y)

]
,

Ĥcc = !
N∑

j=1

(ωj â
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†
j â
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Ĥwg describes the propagation of photons in the waveguides
with group velocity vg , where ĉ

†
L(x < 0) [ĉ†L(x > 0)] and

ĉ
†
R(y < 0) [ĉ†R(y > 0)] are the creation operators for an

incoming [outgoing] photon in the left and right waveguides,
respectively. Ĥcc describes the coupled cavity system, where
the bosonic operator â

†
j annihilates a photon in the j th cavity,

which has the resonant frequency ωj and nonlinearity Uj . The
photon hopping rate between the cavities is given by J . Ĥwc
describes the coupling between the waveguides to the adjacent
cavities, with coupling strengths V1 and V2. From here on,
we set vg = ! = 1. To analyze the properties of the scattered
photons, we analytically find the two-photon scattering matrix
S(2) within the Lippmann-Schwinger formalism (for a formal
definition of the scattering matrix and a detailed derivation,

see Appendix A):

LL⟨p1,p2|S(2)|k1,k2⟩
= SLLδ(k1 + k2 − p1 − p2)

+
[
rk1rk2δ(k1 − p1)δ(k2 − p2) + (k1 ↔ k2)

]
, (1)

LR⟨p1,p2|S(2)|k1,k2⟩
= SLRδ(k1 + k2 − p1 − p2)

+
[
rk1 tk2δ(k1 − p1)δ(k2 − p2) + (k1 ↔ k2)

]
, (2)

RR⟨p1,p2|S(2)|k1,k2⟩
= SRRδ(k1 + k2 − p1 − p2)

+
[
tk1 tk2δ(k1 − p1)δ(k2 − p2) + (k1 ↔ k2)

]
, (3)

where we have used ki (pi) to denote the input (output)
momenta. The subscripts LL, LR, and RR refer to which
waveguide the two output photons have scattered to, e.g., RR
means that two photons are in the right waveguide. rk and tk
are the single-photon reflection and transmission coefficients,
respectively. The second lines on the right-hand side of
the equations describe independent single-photon scattering
events, whereas the first lines describe the contributions due to
the nonlinearity present in the cavity array, i.e., SLL, SLR , and
SRR vanish when U1 = U2 = 0.

We now focus on the experimentally relevant case of two
resonators [19–21] and assume, for simplicity, ω1 = ω2 = ω0,
U1 = U2 = U , and V1 = V2 = V . At this point, it is useful
to define the total energy k1 + k2 = p1 + p2 as 2ω0 + δ and
the relative energy as $k = k1 − k2 and $p = p1 − p2. The
eigenenergies of the system in the one-particle manifold are
ω0 + ϵ

(1)
± where ϵ

(1)
± ≡ ±J , and the two-particle excitation

subspace is composed of 2ω0 + ϵ
(2)
0,± with ϵ

(2)
0 ≡ 2U and

ϵ
(2)
± ≡ U ±

√
4J 2 + U 2 corresponding, respectively, to the

eigenstates

|20⟩ ∼ |20⟩ − |02⟩,

|2±⟩ ∼ |20⟩ + |02⟩ − U ∓
√

4J 2 + U 2
√

2J
|11⟩,

where |jk⟩ = 1√
j !k! (â

†
1)j (â†

2)k|0⟩. Here, |2−⟩ becomes the unit-
filled ground state |11⟩ in the limit of U → ∞. In Eqs. (1)–(3),
the bound terms SLL,SLR , and SRR have resonances at

|$k|(|$p|) = |2ϵ
(1)
± − δ| (4)

for δ = 0,2ϵ
(1)
± , and ϵ

(2)
0,±, implying that the bound-term

contributions are significant only if one of the input or output
photons is resonant with one of the single-photon eigenstates,
as illustrated in Fig. 2.

First we discuss the resonance structure of the scattering
matrix. To show an example of how the bound terms behave,
we depict SRR =

∫
d$kd$p|SRR|2 as a function of δ in

Fig. 3(a). When the waveguide-cavity coupling strength is
weak (blue solid curve, V 2 = 0.01), we find that the resonant
peaks at δ = 0,2ϵ

(1)
± and ϵ

(2)
0,± are clearly distinguished, whereas

for a higher coupling strength (orange dashed curve, V 2 =
0.25), resonances get broadened such that finer details are
washed out. General resonant behavior of SRR over δ and U is
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FIG. 2. (Color online) Energy-level diagram of the two-site
Bose-Hubbard QCA, where the bare-cavity energies and the coupled-
mode energies of the cavities are shown. One of the resonant
two-photon excitation paths satisfying Eq. (4) is illustrated by the
arrows on the left, while the off-resonant path for identical input
photons is shown on the right.

also depicted in Fig. 3(b), which shows that the bound terms
have the resonances at δ = 0,2ϵ

(1)
± and ϵ

(2)
0,± for any value of U .

Furthermore, |SRR|2 is analyzed as a function of $k and $p
for each resonant δ in Fig. 3(c), where the resonant condition of
Eq. (4) for $k ($p) is clearly seen. The first two cases (δ = 0
and 2ϵ

(1)
± ) correspond to when each photon is resonant to a

state belonging to the single excitation manifold, while the rest
(δ = ϵ

(2)
0,±) correspond to when one photon has either ϵ

(1)
± and

the other has ϵ
(2)
0,± − ϵ

(1)
± . Similar resonant mechanisms have

been observed in other systems, such as a waveguide coupled
to a cavity embedded in a two-level system [35] or a waveguide
coupled to a whispering-galley resonator containing an atom
[36].

Throughout this work, we will consider two types of input
states: (1) two photons satisfying the resonance condition (4),
where for simplicity one of the input photons is assumed to
have the energy ϵ

(1)
− , i.e., $k = δ − 2ϵ

(1)
− with δ = ϵ

(2)
0,± (see

arrows on the left side of Fig. 2); and (2) two photons satisfying
the two-photon resonance condition while having the same
energy, i.e., $k = 0 with δ = ϵ

(2)
0,± (see arrows on the right

side of Fig. 2). Later, we will show that within the long input
pulse regime, the second-order intensity correlations in the
latter case are directly proportional to that in the coherent
driving scenario. Figure 3(d) shows the (unnormalized) two-
photon eigenstate excitation amplitudes directly involved in
two-photon scattering constructed from the coefficients (e11,
e12, and e22) of the two-photon scattering eigenstate given
in Appendix A 2. We see that when driven by the respective
two-photon eigenenergies (three circles), the fully resonant
case (solid curves) generally excites the desired eigenstates
more efficiently than the identical-photon input case (dashed
curves). Exceptions only occur in two regimes: (1) near
the linear regime for δ = ϵ

(2)
+ , where the $k = 0 hits the

higher harmonic ladder; and (2) near U/J = 1 for δ = ϵ
(2)
0 ,

where the two-photon energy becomes twice the single-
photon eigenenergy ϵ

(1)
+ . The fully resonant photon scattering

scenario therefore promises more efficient probe transmission
spectroscopy of the multiphoton eigenstates. We will show

this by explicitly calculating the scattering probabilities. We
also calculate the second-order intensity correlations to further
characterize the scattered light and connect the observed
behavior with the underlying states of the QCA.

III. SIGNATURES OF MANY-BODY STATES
IN TRANSMISSION SPECTRA

In the momentum space, a general two-photon initial state is
given by |2{ξ}⟩ = 1√

M2
ĉ
†
ξ1
ĉ
†
ξ2
|0⟩, where the normalization factor

M2 = 1 + |
∫

dkξ1(k)ξ2(k)|2 is associated with the overlap
of the momentum distributions ξi(k) and the continuous-
mode creation operator is given by ĉ

†
ξ =

∫
dkξ (k)ĉ†L(k) with∫

dk|ξ (k)|2 = 1. The output state is then calculated from the
scattering matrix as follows:
∣∣out(2)

{ξ}
〉
= S(2)|2{ξ}⟩ =

∣∣out(2)
{ξ}

〉
LL

+
∣∣out(2)

{ξ}
〉
LR

+
∣∣out(2)

{ξ}
〉
RR

,

where |out(2)
{ξ}⟩s1s2 =

∫
dq1dq2

1√
M2

ξ1(q1)ξ2(q2)|φ(2)
out⟩s1s2 , for

(s1,s2) ∈ {L,R}, where |φ(2)
out⟩LL, |φ(2)

out⟩LR , and |φ(2)
out⟩RR repre-

sent the two-photon wave functions associated with Eqs. (1),
(2), and (3), respectively (see Appendix A 2). We assume the
momentum distribution to have a narrow Gaussian profile for
simplicity, i.e., ξj (q) = 1

(2πσ 2)1/4 exp[ − (q−kj )2

4σ 2 ], where ξj is
narrowly peaked around kj . Given a narrow enough bandwidth
with respect to the effective cavity linewidth, ∝V 2, the
effects of the pulse shape are very small, as presented in
Appendix B 2—quantitatively similar results are obtained for
both the Lorentzian and “rising” pulse profiles. We note that
recent developments in the pulse-shaping techniques make our
photon-scattering scenario experimentally feasible [41,42].

A. Scattering probabilities

Using the above initial state, we first consider the scattering
probabilities defined as

PLL =
∫

dp1dp2
1
2

∣∣〈p1,p2
∣∣out(2)

{ξ}
〉
LL

∣∣2
,

PLR =
∫

dp1dp2
∣∣〈p1,p2

∣∣out(2)
{ξ}

〉
LR

∣∣2
,

PRR =
∫

dp1dp2
1
2

∣∣〈p1,p2
∣∣out(2)

{ξ}
〉
RR

∣∣2
,

as in [33]. Figure 4 depicts them as functions of the total energy
δ/J (top row) or of the photon-photon interaction strength
U/J (lower rows). The left-hand column displays the fully
resonant case [see Eq. (4)] where one photon has the energy ϵ

(1)
−

and the other has the energy δ − ϵ
(1)
− , whereas the right-hand

column displays the results when $k = 0. In Figs. 4(a) and
4(e), we plot the two-photon transmission probability (= PRR)
for different values of interaction strengths (U/J = 0,1,5). In
the linear case, there are transmission peaks when each photon
is resonant to the linear mode of the coupled cavities. As one
increases the nonlinearity, peaks start to form at the correlated
two-particle eigenstates of the coupled nonlinear cavities.

Note that the transmission probabilities are significantly
larger in the fully resonant cases compared to the $k = 0
cases, in which the two-photon transmission requires a virtual
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FIG. 3. (Color online) Bound-state contribution in the scattering matrix element, SRR , is shown as a function of δ, (a) for V 2 = 0.01 (blue
solid curve) and V 2 = 0.25 (orange dashed curve), and (b) with detuning of total incident energy and nonlinearity for V 2 = 0.25. (c) The
resonant conditions of $k($p) in |SRR|2 for δ = 0,2ϵ

(1)
± , and ϵ

(2)
0,± for U = 5 and V 2 = 0.25. (d) The respective eigenstate excitation amplitudes

at the corresponding two-photon energy resonances with increasing U/J when $k = δ − 2ϵ
(1)
− (solid curve) and $k = 0 (dashed curve) for

V 2 = 0.04. All units are defined with respect to J . Panel (c) clearly depicts the resonance condition written in Eq. (4), while panel (d) shows
how the desired eigenstates are more efficiently excited when this condition is met (solid curves) as opposed to the off-resonant case (dashed
curves).

(off-resonant) one-photon absorption. This indicates that the
fully resonant Fock-state transport scheme has an advantage
over the identical-photon transport case in detecting two-
photon transmission through the multiparticle correlated states
of the QCA. In turn, this means that the two-photon scattering
scenario performs better than the coherent driving case because
(1) the two photons necessarily have the same energy in the
latter, and (2) the probability of finding two photons in a
coherent state |α⟩ goes as |α|4 ≪ 1 in the weak-field limit.

In Figs. 4(b)–4(d) and 4(f)–4(h), the scattering probabilities
at the resonances δ = ϵ

(2)
0,± are further investigated as functions

of U/J . We first note that over a wide region of U/J , except
for the cases that coincide with the single-photon resonances,
PLR ≈ 1 for $k = δ − 2ϵ

(1)
− (left-hand column), while PLL ≈ 1

for $k = 0. This is due to the fact that one of the two photons
is always resonant to the (lower) single energy state in the fully
resonant case, while neither photon is resonant in the $k = 0
cases. The figure also hints that the probabilities at δ = ϵ

(2)
0

and δ = ϵ
(2)
+ approach the same value above U/J ∼ 20. This

is due to the fact that above this value of U/J , the two states are
no longer distinguishable because of their energy broadening
(V 2/J = 0.04). The interference between the corresponding
eigenstates, |20⟩ and |2+⟩, induces the little shift observed
in the scattering probabilities. Similarly, in the δ = ϵ

(2)
− case,

the energy of one of the photons approaches ϵ
(1)
+ within the

decay bandwidth, resulting in larger two-photon transmission
probability with increasing U/J . Effects of this kind are absent
when $k = 0.
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FIG. 4. (Color online) Left- and right-hand columns : $k = δ − 2ϵ
(1)
− and $k = 0. Two-photon transmission (PRR) is shown as a function

of the two-photon detuning δ/J for different photon-photon interaction strengths U/J = 0,1,5 in (a) and (e). The probabilities PLL,PLR , and
PRR are also shown as a function of U/J for two-photon eigenenergies δ = ϵ

(2)
0,± in (b)–(d) and (f)–(h). Weak waveguide-cavity coupling and the

narrow bandwidth of initial photons are assumed: V 2/J = 0.04 and σ/J = 0.005. Note the difference in the behavior of scattering probabilities
as a function of U/J when two-particle states are probed fully resonantly with different energy photons via the one-particle manifold (left
column) compared to the case where a virtual (off-resonant) one-photon absorption is required (right column). In addition, in the former case,
transmission is generally significantly larger, which makes this approach experimentally more efficient (see text for more details).

B. Intensity-intensity correlations

The scattering probabilities reveal the presence of the multiphoton correlated states, but no information about the actual
correlations is given. For the latter, one may employ the second-order correlation function between positions z1 and z2:

g(2)
s1s2

(z1,z2) = ⟨out(2)
{ξ}|ĉ†s1 (z1)ĉ†s2 (z2)ĉs1 (z2)ĉs2 (z1)|out(2)

{ξ}⟩
⟨out(2)

{ξ}|ĉ†s1 (z1)ĉs1 (z1)|out(2)
{ξ}⟩⟨out(2)

{ξ}|ĉ†s2 (z2)ĉs2 (z2)|out(2)
{ξ}⟩

, where (s1,s2) ∈ {R,L}. Here, we focus on the transmitted light, whose

correlation function can be written as

g
(2)
RR(z1,z2) =

2
∣∣ ∫

{ξ (k)} φRR(z1,z2)
∣∣2

1
M2

∫
dx

[∣∣ ∫
{ξ (k)} φLR(x,z1)

∣∣2 + 2
∣∣ ∫

{ξ (k)} φRR(x,z1)
∣∣2] ∫

dx
[∣∣ ∫

{ξ (k)} φLR(x,z2)
∣∣2 + 2

∣∣ ∫
{ξ (k)} φRR(x,z2)

∣∣2] , (5)

where
∫
{ξ (k)} ≡

∫
dk1dk2ξ1(k1)ξ2(k2), and φ

(2)
LR and φ

(2)
RR repre-

sent the two-photon wave functions associated with Eqs. (2),
and (3), respectively (see Appendix A 2). In this work, we will
concentrate on the zero-delay case, i.e., z1 = 0 and z2 = 0.
Note that the two-photon state of incoming light has different
correlations for different values of $k, since the distinguisha-
bility of the photons affects the intensity-intensity correlations.

Specifically, g
(2)
initial increases from g

(2)
initial = 1

2 when k1 = k2 to
g

(2)
initial = 1 when |k1 − k2| ≫ σ (see Appendix B 1).

Figures 5(a) and 5(c) plot the zero-delay second-order
correlations against the total energy δ/J . In the absence of
nonlinearity, the $k = 0 case yields g

(2)
RR = 1/2: being linear,

the system does not change the statistics of the (identical)
input photons. On the other hand, in the fully resonant
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FIG. 5. (Color online) Left- and right-hand columns : $k = δ − 2ϵ
(1)
− and $k = 0. Second-order intensity correlation function g

(2)
RR is

shown (a),(c) as a function of two-photon detuning δ/J for different photon-photon interaction strengths U/J = 0,1,5 and (b),(d) as a function
of U/J for two-photon eigenenergies δ = ϵ

(2)
0,±. The same parameters are chosen as used in Fig. 4. We highlight here the direct mapping of the

correlations of the many-body state ϵ
(2)
− onto the transmitted light g

(2)
RR [the green dotted line in (b)], as the former monotonically approaches the

Mott-like state |1,1⟩ with increasing U/J . This does not hold in the identical-photons case, however, where g
(2)
RR first increases before it dips

down to follow the correlations of the state. The same behavior is also found in the coherent-driving scenario [16]. (See the detailed discussion
in Sec. III B regarding the rest of the states and regimes, and differences between the two approaches.)

case, there are peaks when the photons have the energies
(ϵ(1)

− ,ϵ
(1)
− ) and (ϵ(1)

− ,ϵ
(1)
+ ), resulting in g

(2)
RR ≈ 1/2 and g

(2)
RR ≈ 1,

respectively. Away from these points, g
(2)
RR ∼ 0 because only

one of the photons is transmitted. As the nonlinearity is
introduced (U = 1,5), correlations around the multiphoton
correlated states change. Before we take a close look at
these, there is an interesting observation worth describing: an
antibunching observed at ϵ(2)

0 /2 when $k = 0. This behavior is
not associated with any multiphoton correlated state, but arises
due to a quantum interference between different pathways to
the two-photon excitation in the second cavity.

To see in detail how the second-order intensity correlations
change with the interaction strength, we plot g

(2)
RR as a function

of U/J at two-photon energies δ = ϵ
(2)
0,± for the cases of $k =

δ − 2ϵ
(1)
− in Fig. 5(b) and $k = 0 in Fig. 5(d). Immediately, we

note that over a wide range of U/J , the transmitted light at two-
photon eigenenergies is antibunched (bunched) when $k =
δ − 2ϵ

(1)
− ($k = 0). Looking more closely, we find that g

(2)
RR in

the fully resonant case provides a more faithful characteriza-
tion of the underlying multiphoton correlated states. Perhaps
this is best illustrated by the δ = ϵ

(2)
0 (blue solid) curves. This

state is proportional to |2,0⟩ − |0,2⟩ regardless of the value
of U/J , and therefore has a constant g

(2)
RR . This is exactly

what is observed in the fully resonant case in contrast to the
identical-photon case, as long as the state is resolved from the
state at ϵ

(2)
+ (i.e., below U/J ∼ 10). Similarly, the g

(2)
RR at ϵ

(2)
−

shows the expected monotonic behavior in the fully resonant
case due to the increase in the |1,1⟩ component with increasing
U/J . In the identical-photon case, large bunching is observed
before g

(2)
RR decreases and dips below 1 only when U/J > 20.

Similar behavior is also found in the coherent-driving scenario
[16].

We attribute the qualitative differences between the two
cases to the presence or absence of the resonant single-photon

transmission. In the fully resonant case, this is guaranteed
by default and, moreover, the single-photon transmission
probability is robust at ≈1 throughout a large range of U/J .
This provides a nice constant background against which the
second-order correlations can be measured. Such a background
field is absent when $k = 0 and bunching is generally
observed because of suppressed single-photon transmission
paired with enhanced two-photon transmission. Incidentally,
the little dip in Fig. 5(d) (g(2)

RR = 1/2, the same as the
background correlation) at U/J = 1 is due to a single-photon
state (at ϵ

(1)
+ ) coming into resonance with ϵ

(2)
0 /2.

From the above findings, we conclude that the fully resonant
scattering scenario exhibits more faithful characteristics of the
underlying many-body QCA states compared to the identical-
photon scattering scenario.

C. Comparison with the coherent-driving scenario

Somewhat surprisingly, the intensity-intensity correlations
for the identical-photon case are quantitatively very similar to
those obtained from the coherent-driving scenario. This can
be seen by writing down the expressions for the correlation
function in both cases. In the scattering formalism, the coherent
input field is incorporated by writing the input wave packet
as |α⟩ = eĉ

†
α−ĉα |0⟩, where ĉ†α =

∫
dkα(k)ĉ†(k) with the mean

photon number n̄ =
∫

dk|α(k)|2, and choosing a Gaussian
wave packet

α(k) =
√

n̄

(2πσ 2)1/4
exp

[
− (k − kc)2

4σ 2

]
,

where α(k) is narrowly peaked around kc. Here we assume that
the coherent field is weak such that the mean photon number
n̄ ≪ 1. In this case, the output state |outα⟩ =

∑
n S(n)|α⟩ can
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be approximated as

|outα⟩ ≈ e−n̄/2
[
|0⟩ + S(1)ĉ†α|0⟩ + 1

2
S(2)(ĉ†α)2|0⟩

]
,

where S(1) and S(2) are given as Eqs. (A8) and (A62),
respectively. For the output state, the second-order intensity
correlations can be calculated from

g
(2)
RR,coherent(z1,z2)

= ⟨outα|ĉ†R(z1)ĉ†R(z2)ĉR(z2)ĉR(z1)|outα⟩
⟨outα|ĉ†R(z1)ĉR(z1)|outα⟩⟨outα|ĉ†R(z2)ĉR(z2)|outα⟩

≈ 1
2

∣∣∫
{α(k)} φRR(z1,z2)

∣∣2

e−n̄
∣∣ ∫ dkα(k)φR(z1)

∣∣2∣∣ ∫ dkα(k)φR(z2)
∣∣2 , (6)

where
∫
{α(k)} ≡

∫
dk1dk2α(k1)α(k2), and φR(x) represents the

single-photon wave function (see Appendix A 1). On the other
hand, the correlations in Eq. (5) can be approximated for the
identical two-photon input ($k = 0) as

g
(2)
RR,two−photon(z1,z2)

≈ 1
4

∣∣∫
{ξ (k)} φRR(z1,z2)

∣∣2

∣∣ ∫ dkξ (k)φR(z1)
∣∣2∣∣∫ dkξ (k)φR(z2)

∣∣2 .

One easily finds that the two cases only differ by a factor of
1/2, identical to the difference in the initial correlations, i.e.,

g
(2)
RR,two−photon ≈ 1

2
g

(2)
RR,coherent. (7)

This is numerically demonstrated in Fig. 6, where we plot
the zero-delay correlations in Eqs. (5) (multiplied by 2) and
(6) as a function of two-photon detuning δ/J for U/J = 1

(a)

(b)

U/J = 1

U/J = 5

g(2)
RR,two−photon

g(2)
RR,coherent

g(2)
ss

FIG. 6. (Color online) Second-order intensity correlations for the
transmitted light as a function of the two-photon detuning δ/J

for U/J = 1,5, obtained from the scattering approach with the
identical two-photon input (blue solid line) and a coherent-state
input (orange thick-dashed line), and also from the master-equation
formalism (green dashed line). For the latter, + = V n̄ = 0.0002 and
γ = V 2 = 0.04 are used.

and U/J = 5 when V 2 = 0.04 and n̄ = 0.001. In Fig. 6,
we also compare with the conventional coherent-driving
scenario treated in the master-equation formalism, where the
semiclassical coherent-driving term +(â1 + â

†
1) is added in the

Ĥcc without considering Ĥwg and Ĥwc, and then the second-
order intensity correlations g(2)

ss are calculated for the steady
state ρss obtained from a quantum optical master equation
with a dissipation rate of γ = V 2. The numerical calculations
of the master-equation formalism show the consistent results
as compared to the scattering approach for the coherent-state
input, i.e., g(2)

ss ≈ g
(2)
RR,coherent.

From these results, we conclude that the fully resonant
scattering scenario has advantages over the conventional
coherent-driving scenario in characterizing the correlations of
the underlying many-body QCA states.

IV. EFFECTS OF PHOTON LOSSES

Lastly, we address the issue of dissipation into nonguided
modes. Within the scattering formalism used in this work,
Markovian photon losses with the rate γbath can be accounted
for by either introducing a waveguide for each cavity [43]
or, equivalently, using a combination of the scattering theory
and the input-output formalism [32,44]. In calculating the
two-photon scattering matrices, it has been found that the
effects of losses can be treated exactly by replacing the
cavity frequency ωj with ωj − iγbath/2 in the Hamiltonian Ĥcc
[43]. Using this method, we have calculated the two-photon
transmission probability (PRR) in the presence of extra photon
losses in the cavities, as shown in Fig. 7(a). As expected,
the transmission probability decreases and broadens as γbath
increases while V 2/J remains fixed. Things are a little more
complicated for the second-order intensity correlation function
g

(2)
RR . We must add extra contributions—in which one photon

is in one of the extra loss channels—to the denominator of
Eq. (5). However, as a first consideration, one can ignore the
effects of “quantum jumps” on these terms and calculate g

(2)
RR

using the non-Hermitian Hamiltonian. The results are plotted

FIG. 7. (Color online) For the fully resonant case, two-photon
transmissions (PRR) and second-order correlations as a function of the
total energy δ/J with γbath/J = 0, 0.02, and 0.04 when V 2/J = 0.04
and U/J = 1.
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in Fig. 7(b), showing the effect of losses for γbath/J = 0, 0.02,
and 0.04 when V 2/J = 0.04 and U/J = 1.

V. SUMMARY AND DISCUSSION

To summarize, we have proposed a few-photon transport
scenario to probe the many-body structure of strongly cor-
related models simulated in QCAs. We have demonstrated
the feasibility of our proposal by analytically calculating the
scattering matrix of the two-photon, two-site Bose-Hubbard
QCA and studying the scattering probabilities and correlation
functions. Signatures of strongly correlated multiparticle states
were found in scattering probabilities and the second-order
intensity correlations. We have compared two cases: (1)
the fully resonant case in which two input photons have
tailored energies to match the single-particle and two-particle
eigenenergies of the model in question; (2) the identical-
photon case in which two input photons have identical energies
and are two-photon resonant with one of the two-particle
states. We find that the multiphoton fully resonant excitation
scenario is advantageous over the alternative, in that it allows
higher transmission probabilities and a more faithful mapping
of the intensity-intensity correlations. Finally, we noted a
correspondence between the identical-photon scattering case
and the coherent-driving case, illustrating that the fully
resonant Fock-state scattering method has advantages over
the latter. The effects of losses in the cavities, as well as the
incoming photons’ pulse shapes and initial correlations, are
studied and analyzed.

A generalization to larger arrays or number of photons
is straightforward but the calculation is involved. To this
end, field theoretic methods such as the Lehmann-Symanzik-
Zimmermann reduction formula [45] or a general connec-
tion between the scattering matrix and Green’s functions
of the local system [46] might prove helpful in deduc-
ing the properties of higher N -photon scattering matrices,
which provides an interesting avenue for future research.
Another interesting topic is to see whether a multicolored
coherent-driving field can be used to obtain similar physics
as studied in this work. We also note that our results are
general and can be applied to probing the structure of any
many-body bosonic model amenable to a QCA implemen-
tation, including the Jaynes-Cummings-Hubbard model, the
extended Bose-Hubbard model, and a whole range of spin
models.

Finally, we note that the scheme presented in this work
can be experimentally demonstrated in a variety of systems,
such as semiconductor microcavities [19], photonic crystal
coupled cavities [47], coupled optical waveguides [48,49], and
superconducting circuits [1,20,21]. In the latter, a dimer array
similar to the one we have described here has been fabricated
and measured with high efficiency [20,21].
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APPENDIX A: SCATTERING EIGENSTATE

In this section, we provide a detailed derivation of the
scattering matrices for the single- and two-photon cases.

1. Single-photon scattering

Single-photon scattering eigenstates are written as

|E(1)⟩ =
∫ ∞

−∞
dxφL(x)ĉ†L(x)|0⟩ +

∫ ∞

−∞
dyφR(y)ĉ†R(y)|0⟩

+ e1â
†
1|0⟩ + e2â

†
2|0⟩. (A1)

The time-independent Schrödinger equation Ĥtot|E(1)⟩ =
E(1)|E(1)⟩ with E(1) = k leads to the following set of equations:

− i
∂

∂x
φL(x) + V1δ(x)e1 = E(1)φL(x), (A2)

− i
∂

∂y
φR(y) + V2δ(y)e2 = E(1)φR(y), (A3)

ω1e1 + Je2 + V1φL(0) = E(1)e1, (A4)

ω2e2 + Je1 + V2φR(0) = E(1)e2. (A5)

From Eqs. (A2) and (A3), the discontinuity relations are given
by φL(0+) = φL(0−) − iV1e1 = 1√

2π
− iV1e1 and φR(0+) =

φR(0−) − iV2e2 = −iV2e2, provided that the initial regions
are considered as φL(x < 0) = 1√

2π
eikx and φR(y < 0) =

0. Furthermore, we have φL(0) = 1
2 [φL(0+) + φL(0−)] and

φR(0) = 1
2 [φR(0+) + φR(0−)]. Now, solving Eqs. (A2) and

(A3) in the region x > 0 and y > 0, one finds

φL(x) = 1√
2π

[θ (−x) + rkθ (x)]eikx,

φR(y) = 1√
2π

tkθ (y)eiky.

The transmission and reflection coefficients are found from the
relations rk = −

√
2π ie1V1 + 1 and tk = −

√
2π ie2V2, where

e1 and e2 are calculated from Eqs. (A4) and (A5):

e1 =

√
2
π
V1

(
−iV 2

2 − 2E(1) + 2ω2
)

4J 2 +
[
V 2

1 − 2i(E(1) − ω1)
][

V 2
2 − 2i(E(1) − ω2)

] ,

e2 = −
2J

√
2
π
V1

4J 2 +
[
V 2

1 − 2i(E(1) − ω1)
][

V 2
2 − 2i(E(1) − ω2)

] .

Thus, the explicit expressions of transmission and reflection
coefficients are written as

rk =
4J 2 −

[
V 2

1 + 2i(E(1) − ω1)
][

V 2
2 − 2i(E(1) − ω2)

]

4J 2 +
[
V 2

1 − 2i(E(1) − ω1)
][

V 2
2 − 2i(E(1) − ω2)

] ,

(A6)

tk = 4iJV1V2

4J 2 +
[
V 2

1 − 2i(E(1) − ω1)
][

V 2
2 − 2i(E(1) − ω2)

] .

(A7)
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As expected, nonlinear effects do not appear in this single-photon case, and hence the transmission and reflection of single
photons are equivalent to the case of two two-level atoms [50] or two linear resonators [51]. Using these results, φL(x) and φR(y)
construct the single-photon scattering matrix [28,33],

S(1) =
∫

dk
∣∣φ(1)

out

〉
k

〈
φ(1)

in

∣∣, (A8)

where the input and output states of the single photon are written as |φ(1)
in ⟩k =

∫
dxφL(x<0)ĉ†L(x)|0⟩ and |φ(1)

out⟩k = |φ(1)
out⟩L +

|φ(1)
out⟩R , with |φ(1)

out⟩L =
∫

dxφL(x>0)ĉ†L(x)|0⟩ and |φ(1)
out⟩R =

∫
dyφR(y>0)ĉ†R(y)|0⟩.

2. Two-photon scattering

For the two-photon scattering problem, a general form of two-photon eigenstates |E(2)⟩ = |E(2)
1 ⟩ + |E(2)

2 ⟩ + |E(2)
3 ⟩ is given as

∣∣E(2)
1

〉
=

∫ ∞

−∞
dx1dx2φLL(x1,x2)

1√
2
ĉ
†
L(x1)ĉ†L(x2)|0⟩ +

∫ ∞

−∞
dy1dy2φRR(y1,y2)

1√
2
ĉ
†
R(y1)ĉ†R(y2)|0⟩

+
∫ ∞

−∞
dx1dy1φLR(x1,y1)ĉ†L(x1)ĉ†R(y1)|0⟩,

∣∣E(2)
2

〉
= e11

1√
2
â
†
1â

†
1|0⟩ + e12â

†
1â

†
2|0⟩ + e22

1√
2
â
†
2â

†
2|0⟩,

∣∣E(2)
3

〉
=

∫ ∞

−∞
dx1[φL1(x1)ĉ†L(x1)â†

1 + φL2(x1)ĉ†L(x1)â†
2]|0⟩ +

∫ ∞

−∞
dy1[φR1(y1)ĉ†R(y1)â†

1 + φR2(y1)ĉ†R(y1)â†
2]|0⟩.

|E(2)
1 ⟩ represents two photons in either the left or right waveguide, |E(2)

2 ⟩ represents two photons in the coupled cavities, and |E(2)
3 ⟩

describes one photon in one of the waveguides and the other in one of the cavities. Here we obtain the two-photon scattering
eigenstates by imposing the open boundary condition. The Schrödinger equation Ĥtot|E(2)⟩ = E(2)|E(2)⟩ gives

−i
∂

∂x2
φLL(x1,x2) − i

∂

∂x1
φLL(x1,x2) + V1√

2
[δ(x1)φL1(x2) + δ(x2)φL1(x1)] = E(2)φLL(x1,x2), (A9)

−i
∂

∂x1
φLR(x1,y1) − i

∂

∂y1
φLR(x1,y1) + V1δ(x1)φR1(y1) + V2δ(y1)φL2(x1) = E(2)φLR(x1,y1), (A10)

−i
∂

∂y2
φRR(y1,y2) − i

∂

∂y1
φRR(y1,y2) + V2√

2
[δ(y1)φR2(y2) + δ(y2)φR2(y1)] = E(2)φRR(y1,y2), (A11)

−i
∂

∂x1
φL1(x1) + φL1(x1)ω1 + φL2(x1)J + V1δ(x1)e11

√
2 + V1

1√
2

[φLL(x1,0) + φLL(0,x1)] = E(2)φL1(x1), (A12)

−i
∂

∂x1
φL2(x1) + φL2(x1)ω2 + φL1(x1)J + V1δ(x1)e12 + V2φLR(x1,0) = E(2)φL2(x1), (A13)

−i
∂

∂y1
φR1(y1) + φR1(y1)ω1 + φR2(y1)J + V2δ(y1)e12 + V1φLR(0,y1) = E(2)φR1(y1), (A14)

−i
∂

∂y1
φR2(y1) + φR2(y1)ω2 + φR1(y1)J + V2δ(y1)e22

√
2 + V2

1√
2

[φRR(y1,0) + φRR(0,y1)] = E(2)φR2(y1), (A15)

ω1e11

√
2 + Je12 + U1e11

√
2 + V1φL1(0) = E(2)e11

1√
2
, (A16)

ω1e12 + ω2e12 + Je22

√
2 + Je11

√
2 + V1φL2(0) + V2φR1(0) = E(2)e12, (A17)

ω2e22

√
2 + Je12 + U2e22

√
2 + V2φR2(0) = E(2)e22

1√
2
. (A18)

Let us first solve these equations in the half spaces, x1 < x2, x1 < y1, and y1 < y2. In this case, there are three quadrants: 1⃝ x1 <
x2 < 0, x1 < y1 < 0, y1 < y2 < 0, 2⃝ x1 < 0 < x2, x1 < 0 < y1, y1 < 0 < y2, and 3⃝ 0 < x1 < x2, 0 < x1 < y1, 0 < y1 < y2.
The initial conditions for the amplitudes in region 1⃝ are given as

φLL(x1 < 0,x2 < 0) = 1√
2

1
2π

(eik1x1+ik2x2 + eik2x1+ik1x2 ), (A19)

φLR(x1 < 0,y1 < 0) = 0, (A20)

φRR(y1 < 0,y2 < 0) = 0. (A21)
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The discontinuity relations of the two-photon amplitudes across x1,x2,y1,y2 = 0 are given from Eqs. (A9)–(A11):

φLL(0+,x2) = φLL(0−,x2) − i
V1√

2
φL1(x2), (A22)

φLL(x1,0+) = φLL(x1,0−) − i
V1√

2
φL1(x1), (A23)

φLR(0+,y1) = φLR(0−,y1) − iV1φR1(y1), (A24)

φLR(x1,0+) = φLR(x1,0−) − iV2φL2(x1), (A25)

φRR(0+,y2) = φRR(0−,y2) − i
V2√

2
φR2(y2), (A26)

φRR(y1,0+) = φRR(y1,0−) − i
V2√

2
φR2(y1). (A27)

Similarly, the discontinuity relations of the cavity-photon amplitudes across the origin are given from Eqs. (A12)–(A15):

φL1(0+) = φL1(0−) − iV1e11

√
2, (A28)

φL2(0+) = φL2(0−) − iV1e12, (A29)

φR1(0+) = φR1(0−) − iV2e12, (A30)

φR2(0+) = φR2(0−) − iV2e22

√
2. (A31)

Two-photon and cavity-photon amplitudes are also discontinuous at x1,x2,y1,y2 = 0 and therefore we set

φLL(0,x) = φLL(x,0) = 1
2

[φLL(0+,x) + φLL(0−,x)], (A32)

φLR(0,y) = 1
2

[φLR(0+,y) + φLR(0−,y)], (A33)

φLR(x,0) = 1
2

[φLR(x,0+) + φLR(x,0−)], (A34)

φRR(0,y) = φRR(y,0) = 1
2

[φRR(0+,y) + φRR(0−,y)]. (A35)

From these, the coupled linear inhomogeneous first-order differential equations (A12)–(A15) in region 1⃝ can be
rewritten as

i
∂

∂x

(
φL1(x < 0)
φL2(x < 0)

)
=

(
ω1 − E(2) − iV 2

1
2 J

J ω2 − E(2) − iV 2
2

2

)(
φL1(x < 0)
φL2(x < 0)

)
+

(√
2V1φLL(x < 0,0−)
V2φLR(x < 0,0−)

)
+

(
V1e11

√
2

V1e12

)
δ(x),

(A36)

i
∂

∂y

(
φR1(y < 0)
φR2(y < 0)

)
=

(
ω1 − E(2) − iV 2

1
2 J

J ω2 − E(2) − iV 2
2

2

)(
φR1(y < 0)
φR2(y < 0)

)
+

(
V1φLR(0−,y < 0)√
2V2φRR(0−,y < 0)

)
+

(
V2e12

V2e22
√

2

)
δ(y).

(A37)

We solve these with the discontinuity relations and the initial conditions in Eqs. (A19)–(A21) to find

φL1(x < 0) = 1√
2

1
2π

(χL1k2e
ik1x + χL1k1e

ik2x), (A38)

φL2(x < 0) = 1√
2

1
2π

(χL2k2e
ik1x + χL2k1e

ik2x), (A39)

φR1(y < 0) = 0, (A40)

φR2(y < 0) = 0, (A41)
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where

χL1k1 = A

[
M−

(k2 + λ−)
− M+

(k2 + λ+)

]
, χL1k2 = A

[
M−

(k1 + λ−)
− M+

(k1 + λ+)

]
, χL2k1 = A

[
1

(k2 + λ−)
− 1

(k2 + λ+)

]
,

χL2k2 = A

[
1

(k1 + λ−)
− 1

(k1 + λ+)

]
, A = 2

√
2V1J√

16J 2 −
[
V 2

1 − V 2
2 + 2i(ω1 − ω2)

]2
,

M∓ = −iV 2
1 + iV 2

2 + 2(ω1 − ω2) ∓ 2
√

2V1J/A

4J
, λ∓ = 1

4

[
− iV 2

1 − iV 2
2 − 4E(2) + 2(ω1 + ω2) ∓ 2

√
2V1J/A

]
. (A42)

Substituting Eqs. (A28)–(A31) into Eqs. (A16)–(A18), we obtain e11,e12 and e22 as follows:

e11 =
√

2V1
{
4J 2φL1(0−) + φL1(0−)

[
V 2

1 + V 2
2 − 2i(E(2) − ω1 − ω2)

]

×
(
2iU2 + V 2

2 − iE(2) + 2iω2
)
+ 2JφL2(0−)

(
2U2 − iV 2

2 − E(2) + 2ω2
)}

/η, (A43)

e12 = 2V1
[
2JφL1(0−) + φL2(0−)

(
−2U1 + iV 2

1 + E(2) − 2ω1
)](

−2U2 + iV 2
2 + E(2) − 2ω2

)
/η, (A44)

e22 = 2
√

2JV1
[
2JφL1(0−) + φL2(0−)

(
−2U1 + iV 2

1 + E(2) − 2ω1
)]

/η,
(A45)

η =
{(

2iU1 + V 2
1 − iE(2) + 2iω1

)[
V 2

1 + V 2
2 − 2i(E(2) − ω1 − ω2)

](
2U2 − iV 2

2 − E(2) + 2ω2
)

+ J 2[8U1 + 8U2 − 4iV 2
1 − 4iV 2

2 + 8(−E(2) + ω1 + ω2)
]}

.

Here, we note that the amplitudes of two-photon excitations are in the same cavity, e11 and e22, and approach zero in the limit
of U1 and U2 → ∞ as these two-photon excitations require an infinite amount of energy.

Substituting the initial conditions in region 1⃝ and Eqs. (A38)–(A41) into the discontinuity relations, we obtain

φLL(x1 < 0,0+) = 1√
2

1
2π

(
rk2e

ik1x1 + rk1e
ik2x1

)
, (A46)

φLR(x1 < 0,0+) = 1
2π

(
tk2e

ik1x1 + tk1e
ik2x1

)
, (A47)

φRR(y1 < 0,0+) = = 0, (A48)

where the single-photon transmission and reflection coefficients for E(2) = k1 + k2 are defined as

rkj
=

(
1 − i

V1√
2
χL1kj

)
, tkj

= −i
V2√

2
χL2kj

,

where j = 1,2. These are same as Eqs. (A6) and (A7). We now solve Eqs. (A9)–(A11) in region 2⃝ with the initial conditions in
Eqs. (A46)–(A48) to find

φLL(x1 < 0,x2 > 0) = 1√
2

1
2π

(
rk2e

ik1x1+ik2x2 + rk1e
ik2x1+ik1x2

)
, (A49)

φLR(x1 < 0,y1 > 0) = 1
2π

(
tk2e

ik1x1+ik2y1 + tk1e
ik2x1+ik1y1

)
, (A50)

φRR(y1 < 0,y2 > 0) = 0. (A51)

Then solving Eqs. (A12)–(A15) in region 3⃝ with the boundary conditions for φL1(0+), φL2(0+), φR1(0+), φR2(0+), φLL(x >
0,0−), φLR(x > 0,0−), φLR(0−,y > 0), and φRR(0−,y > 0), we obtain

φL1(x > 0) = 1√
2

1
2π

(
rk1χL1k2e

ik1x + rk2χL1k1e
ik2x + M−cL−e−iλ−x + M+cL+e−iλ+x

)
, (A52)

φL2(x > 0) = 1√
2

1
2π

(
rk1χL2k2e

ik1x + rk2χL2k1e
ik2x + cL−e−iλ−x + cL+e−iλ+x

)
, (A53)

φR1(y > 0) = 1√
2

1
2π

(
tk1χL1k2e

ik1y + tk2χL1k1e
ik2y + M−cR−e−iλ−y + M+cR+e−iλ+y

)
, (A54)

φR2(y > 0) = 1√
2

1
2π

(
tk1χL2k2e

ik1y + tk2χL2k1e
ik2y + cR−e−iλ−y + cR+e−iλ+y

)
, (A55)

where

cL∓ = ±A

{
2π

V1
[M±φL2(0+) − φL1(0+)] − rk1

(k1 + λ∓)
− rk2

(k2 + λ∓)

}
,

cR∓ = ±A

{
2π

V1
[M±φR2(0+) − φR1(0+)] − tk1

(k1 + λ∓)
− tk2

(k2 + λ∓)

}
.
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Here, cL∓ = 0 and cR∓ = 0 when U1 = 0 and U2 = 0, so that φL1(x > 0),φL2(x > 0),φR1(y > 0),φR2(y > 0) have only
single-photon behaviors.

Equations (A22)–(A27) can be rewritten as

φLL(0+,x2 > 0) = 1√
2

1
2π

(
rk1rk2e

ik1x2 + rk2rk1e
ik2x2 + BLL−e−iλ−x2 + BLL+e−iλ+x2

)
, (A56)

φLR(0+,y1 > 0) = 1
2π

(
tk1rk2e

ik1y1 + tk2rk1e
ik2y1 + BLR1−e−iλ−y1 + BLR1+e−iλ+y1

)
, (A57)

φRR(0+,y2 > 0) = 1√
2

1
2π

(
tk1 tk2e

ik1y2 + tk2 tk1e
ik2y2 + BRR−e−iλ−y2 + BRR+e−iλ+y2

)
, (A58)

with BLL− = −i V1√
2
M−cL− , BLL+ = −i V1√

2
M+cL+ , BLR1− = −i V1√

2
M−cR− , BLR1+ = −i V1√

2
M+cR+ , BRR− = −i V2√

2
cR− , and

BRR+ = −i V2√
2
cR+ .

Finally, substituting Eqs. (A52)–(A55) and then applying the initial conditions given by Eqs. (A56)–(A58), we solve Eqs. (A9)–
(A11) in region 3⃝,

φLL(0 < x1 < x2) = 1√
2

1
2π

(
rk1rk2e

ik2x1+ik1x2 + rk2rk1e
ik1x1+ik2x2 + BLL−ei(k1+k2+λ−)x1−iλ−x2 + BLL+ei(k1+k2+λ+)x1−iλ+x2

)
,

φLR(0 < x1 < y1) = 1
2π

(
tk1rk2e

ik2x1+ik1y1 + tk2rk1e
ik1x1+ik2y1 + BLR1−ei(k1+k2+λ−)x1−iλ−y1 + BLR1+ei(k1+k2+λ+)x1−iλ+y1

)
,

φRR(0 < y1 < y2) = 1√
2

1
2π

(
tk1 tk2e

ik2y1+ik1y2 + tk2 tk1e
ik1y1+ik2y2 + BRR−ei(k1+k2+λ−)y1−iλ−y2 + BRR+ei(k1+k2+λ+)y1−iλ+y2

)
.

One can repeat the above calculations for the other half spaces to obtain

φLL(0 < x2 < x1) = φLL(0 < x1 < x2)|x1↔x2 ,

φLR(0 < y1 < x1) = 1
2π

(
rk1 tk2e

ik1x1+ik2y1 + rk2 tk1e
ik2x1+ik1y1 + BLR2−ei(k1+k2+λ−)y1−iλ−x1 + BLR2+ei(k1+k2+λ+)y1−iλ+x1

)
,

φRR(0 < y2 < y1) = φRR(0 < y1 < y2)|y1↔y2 ,

where BLR2− = −i V2√
2
cL− and BLR2+ = −i V2√

2
cL+ .

From the above results, the full solution of the two-photon eigenstates is given by the amplitudes,

φLL(x1,x2) = 1√
2

1
2π

{
∑

P

[
θ (−x1)θ (−x2) + θ (x1)θ (x2)rkP1

rkP2

]
eikP2 x1+ikP1 x2

+
∑

Q

ei(k1+k2)xQ1 (BLL−eiλ−(xQ1 −xQ2 ) + BLL+eiλ+(xQ1 −xQ2 ))θ
(
xQ2 − xQ1

)
θ
(
xQ1

)
⎫
⎬

⎭, (A59)

φLR(x1,y1) = 1
2π

[
∑

P

θ (x1)θ (y1)tkP1
rkP2

eikP2 x1+ikP1 y1 + ei(k1+k2)x1 (BLR1−eiλ−(x1−y1) + BLR1+eiλ+(x1−y1))θ (y1 − x1)θ (x1)

+ ei(k1+k2)y1 (BLR2−eiλ−(y1−x1) + BLR2+eiλ+(y1−x1))θ (x1 − y1)θ (y1)

]

, (A60)

φRR(y1,y2) = 1√
2

1
2π

[
∑

P

θ (y1)θ (y2)tkP1
tkP2

eikP2 y1+ikP1 y2

+
∑

Q

ei(k1+k2)yQ1 (BRR−eiλ−(yQ1 −yQ2 ) + BRR+eiλ+(yQ1 −yQ2 ))θ
(
yQ2 − yQ1

)
θ
(
yQ1

)
⎤

⎦, (A61)

where E(2) = k1 + k2. P = (P1,P2) and Q = (Q1,Q2) are permutations of (1,2) needed to account for the bosonic symmetry of
the wave function.

Here, all of the B’s become zero if the cavities are linear, i.e., U1 = U2 = 0, so that each photon undergoes the individual
scattering process and the energy of each photon is preserved. If the system, on the other hand, is nonlinear, then the bound-state
contributions become important, modifying the photon statistics of the output light, as shown in the main text. In the limit
of U → ∞, B’s become exactly the same as those of the coupled two-level atoms [50]. Finally, we can find the two-photon
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scattering matrix, as in [33], from

S(2) =
∫

dk1dk2
1
2!

∣∣φ(2)
out

〉
k1,k2

〈
φ(2)

in

∣∣, (A62)

where the input and output states are written as
∣∣φ(2)

in

〉
k1,k2

=
∫

dx1dx2φLL(x1<0,x2<0)
1√
2
ĉ
†
L(x1)ĉ†L(x2)|0⟩,

∣∣φ(2)
out

〉
k1,k2

=
∣∣φ(2)

out

〉
LL

+
∣∣φ(2)

out

〉
LR

+
∣∣φ(2)

out

〉
RR

,

where
∣∣φ(2)

out

〉
LL

=
∫

dx1dx2φLL(x1>0,x2>0)
1√
2
ĉ
†
L(x1)ĉ†L(x2)|0⟩,

∣∣φ(2)
out

〉
LR

=
∫

dx1dy1φLR(x1>0,y1>0)ĉ†L(x1)ĉ†R(y1)|0⟩,

∣∣φ(2)
out

〉
RR

=
∫

dy1dy2φRR(y1>0,y2>0)
1√
2
ĉ
†
R(y1)ĉ†R(y2)|0⟩.

The scattering matrix elements between the input (k1,k2) and output (p1,p2) momentums are given as

LL⟨p1,p2|S(2)|k1,k2⟩ = rk1rk2δ(k1 − p1)δ(k2 − p2) + rk2rk1δ(k1 − p2)δ(k2 − p1) + SLLδ(k1 + k2 − p1 − p2), (A63)

LR⟨p1,p2|S(2)|k1,k2⟩ = rk1 tk2δ(k1 − p1)δ(k2 − p2) + rk2 tk1δ(k1 − p2)δ(k2 − p1) + SLRδ(k1 + k2 − p1 − p2), (A64)

RR⟨p1,p2|S(2)|k1,k2⟩ = tk1 tk2δ(k1 − p1)δ(k2 − p2) + tk2 tk1δ(k1 − p2)δ(k2 − p1) + SRRδ(k1 + k2 − p1 − p2), (A65)

where
SLL = 1

2π

[
Bk1,k2

LL−

( −i

λk1,k2
− + p2

+ −i

λk1,k2
− + p1

)
+ Bk1,k2

LL+

( −i

λk1,k2
+ + p2

+ −i

λk1,k2
+ + p1

)]
,

SLR = 1
2π

(
Bk1,k2

LR1−

−i

λk1,k2
− + p2

+ Bk1,k2
LR1+

−i

λk1,k2
+ + p2

+ Bk1,k2
LR2−

−i

λk1,k2
− + p1

+ Bk1,k2
LR2+

−i

λk1,k2
+ + p1

)
,

SRR = 1
2π

[
Bk1,k2

RR−

( −i

λk1,k2
− + p2

+ −i

λk1,k2
− + p1

)
+ Bk1,k2

RR+

( −i

λk1,k2
+ + p2

+ −i

λk1,k2
+ + p1

)]
.

APPENDIX B: INTENSITY-INTENSITY CORRELATION

In this section, we discuss the equal-time second-order
intensity correlations of the initial two-photon wave packet
and study the effects of pulse shape on the correlations of the
transmitted light.

1. Correlations between the two initial photons

Here, we analyze the initial correlations for two photons
given in the main text: |2{ξ}⟩ = 1√

M2
ĉ
†
ξ1
ĉ
†
ξ2
|0⟩. The correlation

function g
(2)
initial(x1,x2) can be written as

g
(2)
initial(x1,x2) = |g1(x1)g2(x2) + g1(x2)g2(x1)|2

1
M2

g3(x1)g3(x2)
,

where

g1(x) = 1√
2π

∫
dkξ1(x)eikx,

g2(x) = 1√
2π

∫
dkξ2(x)eikx,

g3(x) = |g1(x)|2 + |g2(x)|2 +
√

M2 − 1

× [g1(x)g∗
2 (x) + g2(x)g∗

1 (x)].

In Fig. 8(a), we depict a monotonic relation between the
autocorrelation, g

(2)
initial(0), and the overlap of initial wave

packets, M2, constructed from different values of momenta k1

and k2. The autocorrelation g
(2)
initial(0) has a maximum at M2 = 1

(corresponding to when |k1 − k2| ≫ σ ) and a minimum at
M2 = 2 (corresponding to when k1 = k2). Figure 8(b) shows

FIG. 8. (Color online) (a) g
(2)
initial(0) as a function of M2, con-

structed from different values of momentums k1 and k2 for initial
two photons. (b) g

(2)
initial as a function of δ when $k = δ − 2ϵ

(1)
− .
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that g
(2)
initial has a minimum of 0.5 at δ = 2ϵ

(1)
− when $k =

δ − 2ϵ
(1)
− (corresponding to the case of $k = 0), i.e., g

(2)
initial

depends on δ when $k = δ − 2ϵ
(1)
− , while g

(2)
initial = 0.5 when

$k = 0 regardless of δ.

2. Effects of pulse shape in narrow-band regime

In this section, we show that the effects of pulse shape
in photon scattering are negligible given a narrow enough
bandwidth. For this purpose, we examine equal-time auto-
correlations in the transmitted light, g

(2)
RR , for three different

temporal envelopes, i.e., Gaussian, Lorentzian, and rising
distributions, respectively, given as

2G(t) =
√

σexp[−σ 2t2 − ik0t](2/π )1/4,

2L(t) =
√

σexp[−σ |t | − ik0t],

2R(t) =
√

σexp[σ t/2 − ik0t]θ (−t),

where σ is the inverse temporal pulse width and k0 is the
central momentum. In the momentum space, they read

ξG(k) = exp[−(k − k0)2/4σ 2](2πσ 2)−1/4,

ξL(k) =
√

2/πσ 3/2[(k − k0)2 + σ 2]−1,

ξR(k) =
√

2/π
√

σ [2i(k − k0) + σ ]−1,

where σ can be seen as the bandwidth of each profile.
Figure 9 plots g

(2)
RR as a function of the probe detuning

for three different pulse profiles. The continuous lines are
the results for the Gaussian profile, whereas the results for
the Lorentzian and rising profiles are marked by the red and
blue dots, respectively. These results clearly demonstrate the

FIG. 9. (Color online) g
(2)
RR as a function of detuning δ/J for

U/J = 1 when (a) $k = δ − ϵ
(1)
− and (b) $k = 0. Parameters are

the same as in the main text.

insensitivity of the intensity correlations to the pulse profile,
as expected in the narrow-band regime. We have also checked
that the probabilities are similarly insensitive to the pulse
profile.
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[32] S. Fan, Ş. E. Kocabaş, and J.-T. Shen, Phys. Rev. A 82, 063821

(2010).
[33] H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. A 82,

063816 (2010).
[34] H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. Lett.

107, 223601 (2011).
[35] T. Shi, S. Fan, and C. P. Sun, Phys. Rev. A 84, 063803 (2011).
[36] T. Shi and S. Fan, Phys. Rev. A 87, 063818 (2013).
[37] E. Rephaeli and S. Fan, Phys. Rev. Lett. 108, 143602 (2012).
[38] S. Xu, E. Rephaeli, and S. Fan, Phys. Rev. Lett. 111, 223602

(2013).
[39] H. Zheng and H. U. Baranger, Phys. Rev. Lett. 110, 113601

(2013).
[40] M. Laakso and M. Pletyukhov, Phys. Rev. Lett. 113, 183601

(2014).

[41] G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich,
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