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Unphysical solutions are ruled out in physical equations, as they lead to behavior that violates fundamental physical
laws. One of the celebrated equations that allows unphysical solutions is the relativistic Majorana equation, thought to
describe neutrinos and other exotic particles predicted in theories beyond the standard model. The neutrally charged
Majorana fermion is the equation’s physical solution, whereas the charged version is, due to charge nonconservation,
unphysical and cannot exist. Here, we present an experimental scheme simulating the dynamics of a charged Majorana
particle by light propagation in a tailored waveguide chip. Specifically, we simulate the free-particle evolution as well
as the unphysical operation of charge conjugation. We do this by exploiting the fact that the wave function is not a
directly observable physical quantity and by decomposing the unphysical solution to observable entities. Our results
illustrate the potential of investigating theories beyond the standard model in a compact laboratory setting. © 2015
Optical Society of America
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1. INTRODUCTION

When Ettore Majorana wrote down his famous equation in 1937
[1,2], he explicitly suggested describing the characteristics of neu-
trinos on its basis. He noted that Lorentz invariance allowed not
only the Dirac equation, but also the expression (ℏ ≡ c ≡ 1)

iγμ∂μψ − mψ c ! 0 (1)

for the wave function ψ of a particle with (Majorana) mass m and
its charge conjugate ψ c. The appearance of the so-called Majorana
mass term points to the violation of charge conservation, sug-
gesting that a particle obeying the Majorana equation must be
its own antiparticle. For this physical reason, ψ is commonly
taken to be charge-neutral; i.e., the Majorana equation is fre-
quently supplemented by the condition ψ ! ψ c (the resulting
particle is called the Majorana fermion) [3]. To date, no elemen-
tary particle has been identified as a Majorana fermion. However,
as Majorana originally envisioned, there is the possibility that the
neutrino is a Majorana fermion. In this case, the corresponding
lepton number would not be conserved and the nature of the neu-
trino can therefore be tested by lepton number nonconserving
processes such as neutrinoless double-beta decay [4]. The concept
of Majorana fermions has also found use in condensed-matter

physics, where quasi-particle excitations can be their own antipar-
ticle. This happens, for example, in superconducting systems
where the Bogoliubov quasi-particles, whose evolution is de-
scribed by the Bogoliubov–De Gennes equations, are Majorana
fermions [5]. Such quasi-particles can be non-Abelian anyons
whose non-Abelian braiding statistics form the building blocks
of topological quantum computation [6,7].

On the other hand, the fact that the charged version of a
Majorana fermion, the Majoranon [8,9], violates charge conser-
vation may provide access to physics beyond the standard model.
In many theories, a potential violation of charge conservation, for
example, associated with higher spacetime dimensions [10] or a
nonvanishing photon mass [11], is considered. In addition, sim-
ulating unphysical effects may yield unexpected benefits in other
areas, as recently shown for the case of complex conjugation that
provides an efficient method to measure entanglement [12].

In this work, we break new ground and devise an experimental
scheme to simulate the dynamics of a Majoranon, thereby imple-
menting a classical optical simulator of an unphysical particle.
To this end, we consider the Majorana equation in 1" 1-
dimensional spacetime, which reads for the two-component

spinor ψ !
!
ψ1
ψ2

"
as
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i∂tψ − σxpxψ " imσyψ# ! 0: (2)

Here, px is the momentum along the spatial coordinate and we
have used the representation such that ψ c ! −iσzσyψ# !

−
!
ψ#
2

ψ#
1

"
, where σx , σy, σz are the Pauli matrices. One cannot

directly simulate this equation due to the fact that it contains
a complex conjugation, which renders its Hamiltonian formu-
lation impossible [8]. However, somewhat surprisingly, this
equation can be decomposed into two physical equations [9]:

i∂tψ$ − σxpxψ$ ∓ mσzψ$ ! 0; (3)

which are the Dirac equations with positive and negative mass
terms. Here, ψ$ are two charge-neutral Majorana fields, i.e.,
ψ c;$ ! −iσzσyψ#

$ ! ψ$, and the original Majoranon field can
be reconstructed from them via the simple relationship

ψ ! ψ" " iψ−: (4)

Importantly, the Dirac equation itself is a physical equation
and can be presented in the Hamiltonian form. As such, it can
be simulated using various systems such as trapped ions [13,14] or
light [15]. Physical operations in this decomposed Hilbert space
of two independent Majorana fermions can be used to simulate
unphysical operations acting on the Majoranon, i.e., complex
conjugation and charge conjugation, to which the evolution is
intrinsically linked [cf. Eq. (2)]. It is important to note, however,
that while the two simulations of the Dirac equations can be per-
formed in parallel, they need to be mutually coherent, such that
the Majoranon field ψ can be reconstructed. Using a photonic
chip setup we implement such a coherent, parallel simulation
of the free evolution of a Majoranon. On top of demonstrating
the unphysical Majoranon dynamics directly by measuring the
absolute values of the spinor components, we also compare the
dynamics of a Majoranon with its Dirac cousin—the same initial
spinor following the Dirac evolution. Note that discrepancies be-
tween the two arise from the difference in the term proportional
to the mass that renders the Majorana equation unphysical. To
illustrate these discrepancies, we evaluate the quantity hσzi !P

njψ1;nj2 − jψ2;nj2 [16]. For a Dirac particle at rest (px ! 0,
or equivalently m → ∞), it measures the population difference
between the positive and negative energy branches and is a con-
served quantity. On the contrary, it is not conserved for the
Majoranon at rest, but oscillates due to the unphysical mass term
that continuously forces exchanges between the spinor compo-
nents. Borrowing from the physics of the Dirac particle, we will
hereafter call this quantity a pseudo-energy for convenience.

2. OPTICAL SIMULATION IN WAVEGUIDE
LATTICES

Our system consists of two 1" 1-dimensional photonic lattices,
each composed of a periodic array of waveguides that are evan-
escently coupled to one another. Such waveguide lattices have
attracted considerable interest and have been used in the explo-
ration of a number of fundamental wave-transport phenomena,
including Anderson localization [17], discrete solitons [18], and
photonic topological insulators [19]. In order to describe the light
evolution along the longitudinal spatial axis Z in a waveguide ar-
ray, one commonly employs a coupled-mode approach [20],
which yields

i∂Zψk " βkψk " κ%ψ k"1 " ψk−1& ! 0; (5)

where ψk is the field amplitude in the kth lattice site, κ is the
coupling between the waveguides, and βk is a position-dependent
detuning.

A. Dirac Dynamics

When a broad input beam with an initial phase shift of π∕2 be-
tween adjacent guides (lateral waveguide spacing d 0) is launched
into a binary waveguide array composed of two interleaved sub-
lattices A and B with different refractive indices amounting to
detunings $β, the light evolution can be approximated by
[15,21]

i∂Zψ$ − 2d 0κσxpxψ$ ∓ βσzψ$ ! 0: (6)

This is the photonic analogue of a Dirac equation for a relativistic
particle with mass $β [cf. Eq. (3)]. The opposing signs of the
mass governing the evolution of the two spinors ψ$ are imple-
mented by an exchange of the sublattices A and B [22]. Note that
instead of time t, the evolution coordinate is now the propagation
distance Z , while κ acts as a scaling parameter. The beam exhibits
a pronounced trembling motion around the main trajectory,
which is the photonic analogue of the famous Zitterbewegung
of a relativistic electron [23]. Figure 1(a) shows an experimentally
observed photonic Zitterbewegung in a photonic lattice using a
tailored input phase distribution (see Sections 2.B.1 and 2.B.2
for details on the experimental implementation). A numerical
simulation of the Zitterbewegung, based on Eq. (5), is shown in
Fig. 1(b). The close correspondence proves the ability to simulate
the Dirac equation in a waveguide lattice.

B. Majorana Dynamics

In our setting, we make use of the capacity for coherent Dirac
simulation and let two light beams propagate along two parallel
planar waveguide lattices with masses of opposite sign, such that
the two Dirac equations for ψ" and ψ− [see Eq. (3)] are simulated
in parallel, leading to Zitterbewegung in opposite directions (see
Fig. 2). After the desired propagation distance (corresponding to
a specific evolution time), the amplitude distributions are

Fig. 1. Observation of photonic Zitterbewegung in a binary waveguide
array. (a) Experimental data for a lattice of 26 guides. (b) Numerical
simulation using Eq. (5) with parameters κ ! 0.064 mm−1 and β !
0.65κ and an initial wave packet matching the experimental conditions.
The different refractive indices of the waveguides in sublattices A and B
are visualized by different radii of the channels.
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coherently combined in order to retrieve the Majoranon wave
function according to Eq. (4). In the following, the structure
of the simulator, its fabrication, and the encoding and readout
of input and output states, respectively, will be discussed in detail.

1. Design and Fabrication of the Simulator

The experimental platform for the simulation of the Majorana
equation consists of two binary waveguide lattices, which only
differ in the ordering of the two sites A and B forming a unit
cell. The first part of the sample (right-hand side in Fig. 2) is
occupied by the encoding stage (see Section 2.B.2). In the central
part, the Dirac equation, Eq. (6), with positive (negative) mass is
simulated over the evolution length Le in the upper (lower) lattice.
In this discrete setting, each spinor amplitude ψ";n in unit cell n
of the upper plane has its counterpart ψ−;n in the lower plane. By
construction, the first spinor components ψ$;n;1 are distributed

over the odd lattice sites, whereas the second components ψ$;n;2
are found on the even sites.

The evolution is terminated by a fan-out section of length Lf ,
in which the waveguide separation is increased until no more sig-
nificant evanescent coupling takes place. This fan-out trajectory
follows a harmonic curve, and Lf is sufficiently long to ensure that
bending losses are negligibly small. Due to the gradual reduction
of the coupling strength in this section, some residual evolution
takes place, which effectively extends the evolution length to some
value Le;eff > Le [24].

Finally, all waveguide pairs of the two planes are mutually con-
nected by vertical directional couplers of length Lc. For balanced
couplers [20], the output amplitudes in the upper ports are propor-
tional to the discrete Majorana spinor ψn ! ψ";n " iψ−;n. Thus
the desired recombination of the two spinors, Eq. (4), is performed
in an integrated and spatially resolved fashion.

Similarly, the amplitude in the lower port is proportional to
the charge-conjugated spinor ψ c;n ! −iσzσyψ#

n ! ψ";n − iψ−;n.
Two simulators with two different masses β have been realized
in the course of this work. In the configuration with the larger
mass (β ! 1.2κ; presented in Figs. 4 and 5) these lower output
ports reach the output facet of the sample and are experimentally
accessible (not shown in Fig. 2).

The waveguides are inscribed in bulk fused silica by nonlinear
absorption of focused (numerical aperture 0.35) pulsed laser radi-
ation (wavelength 800 nm, pulse duration τ, pulse energy Ep,
repetition rate 100 kHz). These nonlinear absorption processes
lead to a permanent increase of the refractive index of the material.
By translating the material with velocity v0 on a certain path
through the focus, a waveguide channel is written [15,19,22].
The fabrication parameters are τ ! 150 fs, Ep ! 300 nJ, and
v0 ! 100 mm∕min for the Dirac lattice of Fig. 1 as well as
the low-mass Majoranon simulator (β ! 0.65κ) of Fig. 3 and
τ ! 120 fs, Ep ! 260 nJ, and v0 ! 90 mm∕min for the high-
mass lattice shown in Figs. 4 and 5, respectively. The waveguide
separation in the evolution section is d 0 ! 18.5%19.5& $ 0.3 μm
for the low (high)-mass lattice, and the refractive index difference
between sublattices A and B is realized by modulating the inscrip-
tion velocity by $6%14& mm∕min .

Fig. 2. Illustration of the waveguide sample, where two Dirac equa-
tions with opposite masses are simulated in two parallel planar lattices.
The inset shows the phase segmentation in the upper lattice, which is
used to impose a phase gradient of π∕2 between adjacent guides. The
reverse segmentation profile is used in the lower plane. The calculated
light intensity distribution with the same parameters as in Fig. 1 has been
superimposed onto the illustration.

Fig. 3. Simulation of a Majoranon with mass β ! 0.65κ. (a),(b) Calculated intensity evolution of the first spinor component ψ1;n and the second
spinor component ψ2;n. In both panels, the number of transverse grid points n and the width of the initial wave packet correspond to the conditions in the
experiment. The dashed lines indicate the evolution distances Z where a measurement is taken. (c),(d) Experimentally observed (E) and numerically
simulated (S) output light intensity distributions for Z ! 0.55κ−1 and Z ! 4.4κ−1. (e) Spinor intensities reconstructed from the experimental data
(symbols) in comparison to the theory (solid lines) for the short evolution length Z ! 0.55κ−1 and (f) the long evolution length Z ! 4.4κ−1.
(g) Pseudo-energy hσzi versus Z . Again, the symbols represent experimental data, whereas the solid line shows the theoretical expectation. The calculation
for the corresponding Dirac spinor is shown by the dashed line. The error bars represent the precision of the simulator within one standard deviation. The
oscillations in pseudo-energy for the Dirac particle arise from nonzero momentum contributions in the initial wave packet, whereas the oscillation of the
Majoranon is mostly caused by the unphysical mass term and its associated charge conjugation.
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2. Encoding of the Input State and Experimental Observation
Technique

We investigate an initial Majoranon wave packet of width σ, cen-
tered around position n0, with zero average momentum and
occupation of only the first spinor component, i.e., ψn%z ! 0& ∝
exp%−%n − n0&2∕2σ2&%10&. The corresponding decomposed spinors
are then given by ψ"'−(;n ∝ exp%−%n − n0&2∕2σ2&% 1−1&'−%

i
i&( [9]. In

order to ensure equal amplitude distributions in the two planes
simulating ψ" and ψ−, balanced directional couplers, each with
only a single input port, are introduced at the front end of the de-
vice, which is then illuminated by a spatially extended beam in the
experiment (see Fig. 2). The beam has a flat-phased Gaussian pro-
file with a waist radius (1∕e intensity) of 40(50) μm for the low
(high)-mass device, corresponding to σ ! 1.1%1.3&, and a wave-
length of λ ! 633 nm.

Due to the mapping from the spinors to light amplitudes [21],
the two Dirac lattices with opposing masses require a phase shift
of π∕2 between adjacent waveguides at the start of the evolution,
but with opposite directions of the phase gradient. This is imple-
mented by a tailored phase segmentation of the waveguides, i.e.,
an intentional periodic omission of waveguide sections [22,25].
The period of this segmentation is 40 μm, and the filling factor
is 1∕2. For λ ! 633 nm, a phase shift of −jπ∕2 is introduced
by a segmented section of length js, with j ! 0;…; 3 and

s ! 1.76%1.85& mm for the low (high)-mass lattice (see inset
of Fig. 2).

The intensity evolution in a single Dirac lattice is observed
directly by the fluorescence of color centers in the waveguides
[26], whereas the evolution in the Majoranon simulator is in-
ferred from the measured output intensity distributions after
the recombination step. For each value of the mass, two samples
with two different evolution lengths have been fabricated.

The measurement uncertainty of these classical light intensities
is negligibly small due to a high signal-to-noise ratio on the cam-
era. Yet, random errors are introduced to the simulator by fab-
rication tolerances of the waveguide system, triggering random
deviations from the target parameters. The positioning precision
of the waveguides relative to each other is $0.3 μm, yielding a
relative uncertainty of Δκ

κ ≈ 0.06 for all in-plane coupling
strengths and causing errors in the intensity splitting ratio of
the vertical couplers by $4% around the target value of 50%.
It was determined from independent measurements that temporal
fluctuations in the inscription parameters cause random variations
of each waveguide’s propagation constant by Δβk

κ ≈ 0.04. The er-
ror bars on the following experimental results (shown in Figs. 3, 4,
and 5) are derived from these uncertainties via simulations of the
light propagation through a Gaussian-distributed ensemble of
10,000 devices for each setting.

Fig. 4. Simulation of a Majoranon with a larger mass compared to Fig. 3, β ! 1.2κ at the two evolution distances Z ! 0.9κ−1 and Z ! 3.5κ−1. The
subfigures are arranged as in Fig. 3. Due to the enlarged mass, the momentum contribution in the initial wave packet is decreased, which reduces the
amplitude of the oscillation in pseudo-energy for the Dirac particle. The oscillations of the Majoranon, however, persist as they are caused by charge
conjugation—an entirely different process.

Fig. 5. Simulation of charge conjugation for the particle with mass β ! 1.2κ. (a) Measured (E) and calculated (S) output intensity profiles for
Z ! 0.9κ−1. The upper row of each image shows the waveguides from Fig. 4 that are used for a reconstruction of the Majorana spinor, whereas
the lower row shows the auxillary waveguides from which the charge-conjugated spinor ψ c is obtained. The intensities of the two components of this
spinor are displayed on the right. (b) Same as (a), but for the longer sample Z ! 3.5κ−1. (c) Evolution of the pseudo-energy of the charge-conjugated
(magenta) and the unconjugated particle (blue) for the Majorana equation (solid) and the Dirac equation (dashed).
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3. EXPERIMENTAL RESULTS

A. Observed Majorana Evolution

Figure 3 shows our experimental results in the low-mass lattice
(β ! 0.65κ; κ ! 0.064 mm−1) consisting of 26 waveguides,
i.e., discretization points n ! 1…; 13 for the spinors. In Figs. 3(a)
and 3(b), the computed parallel evolution of both components of
the Majoranon spinor is presented. We observe that although ini-
tially all intensity is concentrated in ψ1, it immediately starts to
oscillate between the two spinor components and, at the same time,
to spread along the transverse space coordinate. Using our pho-
tonic structure, we observe the population of both spinor compo-
nents at two different propagation distances. For a small effective
evolution distance of Z ! Le;eff ! 0.55κ−1 ! 8.6 mm, the light
mostly remains in oddwaveguide sites, which heralds the prevalent
occupation of ψ1 (Fig. 3(c)). For a larger distance of Z ! 4.4κ−1,
one expects another minimum of spinor 2 accompanied by exten-
sive spreading of the wave packet (cf. Figs. 3(a) and 3(b)). Indeed,
most of the light is again trapped in the odd channels and the entire
wave packet is spread over a much larger spatial region (Fig. 3(d)).
The individual spinor intensities, which are equivalent to the light
intensities on the odd/even sites, are shown in Figs. 3(e) and 3(f),
together with the theoretical data. Differences in the spinor distri-
bution between theory and experimental data can be attributed to
the fabrication precision of the simulator (see error bars) as well as
systematic errors arising at the phase preparation stage (mainly
losses and the gradual accumulation of the phases in the segmented
channels). At both lengths, the population of ψ1 predominates ψ2.

B. Pseudo-Energy Oscillation

In Fig. 3(g) we show the expected unphysical oscillations in the
pseudo-energy of the Majoranon as discussed earlier. The mea-
sured values of hσzi at the two evolution lengths agree with the
expected values within one standard deviation, while displaying a
significant difference from the calculated pseudo-energy of the
same initial spinor subjected to the Dirac equation (6). Note that
the oscillations in pseudo-energy for the Dirac particle and the
Majoranon occur for entirely different reasons: the oscillation
for the Dirac particle occurs due to nonzero momentum compo-
nents in the initial wave packet, while the oscillation for the
Majoranon is mainly due to the unphysical mass term.

To elaborate on this difference further, we investigate the
evolution of a Majoranon with a larger mass, where the nonzero
momentum contribution plays a smaller role. For this purpose, we
measure the light evolution in the second system with β ! 1.2κ,
where κ ! 0.072 mm−1 and 30 lattice sites were used. The results
are summarized in Fig. 4. Due to the reduced momentum contri-
bution in the evolution, the amplitude of the oscillation in pseudo-
energy has gotten smaller for the Dirac particle, resulting in larger
discrepancies from the Majoranon, whose oscillation amplitude is
not affected by the increase in mass (see Fig. 4(g)). The oscillation
frequency, however, has increased, such that already at small dis-
tancesZ ! 0.9κ−1, mostlyψ2 is populated (see Figs. 4(a)–4(c) and
4(e)). After a distance of Z ! 3.5κ−1, a further oscillation period
has occurred, leading again to a strong population of ψ2. However,
the transverse spreading of the wave packet is much less pro-
nounced than for the smaller mass of β ! 0.65κ, as is clearly visible
from Figs. 4(d) and 4(f). This is consistent with the fact that the
amplitude of the Zitterbewegung of ψ$ decreases for larger masses,
whereas the frequency is increased [14,15].

C. Implementation of Charge Conjugation

Finally, we demonstrate how the unphysical operation of charge
conjugation can be simulated in our system. To this end, one
can make use of the fact that the final waveguide couplers possess
two output ports. So far, only the upper ports have been used to
produce theMajoranon wave function. In the lower ports, the two
Dirac wave packets are recombined with the opposite phase, which
yields the charge-conjugated spinor ψ c%Z & ! ψ"%Z & − iψ−%Z &,
up to a phase, after the propagation distance Z . The measured
and numerically simulated output intensity distributions and re-
constructed spinors are displayed in Figs. 5(a) and 5(b). It is evident
that for both evolution lengths, the occupation of the spinor com-
ponents is reversed: whereas the second component is prevalent in
the Majorana spinor (cf. Fig. 4), its charge-conjugated brother has
mostly its first component occupied. That is exactly what one
would expect from the definition of charge conjugation:

ψ c !
!
−ψ#

2
ψ#
1

"
. Accordingly, the pseudo-energy hσzi after charge

conjugation oscillates in antiphase with that of the unconjugated
particle. The experimental observation of the pseudo-energy at the
two evolution lengths lies within one standard deviation of this
theoretical prediction (symbols and solid lines in Fig. 5(c)).
Dirac particles of either charge, on the other hand, would preserve
their pseudo-energy, and merely momentum-induced oscillations
would occur (dashed lines). This illustrates the striking difference
between the physical Dirac equation, where charge is preserved,
and the unphysical Majorana equation, which violates charge
conservation.

4. DISCUSSION

In ourwork, we coherently simulated the dynamics of aMajoranon
wave packet by classical optics in a compact integrated waveguide
architecture. The evolution of the free particle is unphysical due to
the fact that it involves charge conjugation and complex conjuga-
tion.Moreover, the simulator permits us to directly implement the
operation of charge conjugation on the evolving wave packet.
Here, evolution and charge conjugation are performed simultane-
ously for arbitrary, but predefined, evolution lengths. This differs
from the proposed trapped ion scheme [8], where such operations
are performed sequentially and independently from one another. A
specific advantage of our classical scheme lies in the possibility that
both the unconjugated and the charge-conjugated Majorana spin-
ors can be accessed simultaneously.

Simulating such unphysical operations provides an entirely new
approach for probing and understanding exotic phenomena and
particles that cannot exist in nature, such as the Majoranon. Our
scheme uses the fact that even for real particles the wave function
itself is not a physical entity, but only its square modulus is. Hence,
the superposition of such wave functions can result in an unphys-
ical phenomenon, which means, conversely, that the latter can be
reproduced by simulating the individual wave functions. Many in-
teresting questions are prompted, concerning, e.g., possible decay
mechanisms of the Majoranon, the impact of many-body effects
and interactions, and their scattering characteristics. For example,
the dynamics of a pair ofMajoranons, which remain to be explored,
will be influenced by their exotic exchange symmetry as well as
their Coulomb interaction. An arbitrary Abelian exchange sym-
metry can be investigated directly in the same setup by resorting
to photon pairs, which are entangled in another degree of freedom,
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such as polarization [27,28]. Interactions, on the other hand, are
most effectively simulated by resorting to two-dimensional wave-
guide architectures [29,30]. We would also like to note that super-
conducting systems may provide an alternative platform to
simulate the Majorana equation with the potential for studying
the effects of quantization [compare Eq. (3) with Eq. (20) of
Ref. [5], for example]. Finally, we anticipate that this first (to
the best of our knowledge) explicit demonstration of unphysical
operations in the laboratory will stimulate many exciting proposals
that utilize the freedomof going beyond the ‘physical’ operations in
areas such as exotic particle physics and quantum information
processing. We note that after the completion of this work, an ex-
perimental simulation of the Majorana equation in a trapped ion
system has appeared [31].
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