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PACS 42.50.Gy – Effects of atomic coherence on propagation, absorption, and amplification
of light; electromagnetically induced transparency and absorption

PACS 42.65.Pc – Optical bistability, multistability, and switching, including local field effects

Abstract – We introduce a versatile platform for studying nonlinear out-of-equilibrium physics.
The platform is based on a slow light setup where an optical waveguide is interfaced with cold
atoms to realize the driven nonlinear Schrödinger equation with a potential. We compare the
proposed setup with similar setups using Bose-Einstein condensates and investigate the system’s
response under coherent driving for a lattice potential. The slow light setup provides novel angles
in the study of nonlinear dynamics due to its advantages in introducing and modulating the
driving, the extra tunability over the sign and strength of the available nonlinearities, and the
possibility to electromagnetically carve out the underlying potential on demand.

Copyright c⃝ EPLA, 2013

Introduction. – The nonlinear Schrödinger equation
(NLSE) arises naturally in many areas of physics. It de-
scribes the propagation of an electromagnetic field in a
nonlinear medium [1,2] or the interacting ground state
of a Bose-Einstein condensate where it is known as the
Gross-Pitaevskii equation [3]. The out-of-equilibrium
physics in such systems are of fundamental importance,
where the nonlinearity of the system changes transport
properties of a driven system, for example. Previous
studies in this category include the nonlinear transport
properties of Bose-Einstein condensates (BECs) in vari-
ous potentials [4–12] and soliton propagation in nonlinear
dielectrics [13]. Quantum transport of few-quanta pulses
in a strongly nonlinear electromagnetically induced trans-
parency (EIT) setup [14] has also been studied recently,
aimed at photon switching applications [15,16].

In this letter, we introduce a versatile platform for
studying nonlinear out-of-equilibrium physics, based on
the stationary light system [17,18]. The ability to con-
trollably introduce a tunable potential for a trapped-
correlated-polariton gas [19], makes it an attractive
platform to realize and explore quantum nonlinear dynam-
ics complementing cold atoms and nonlinear optics setups.
As an example of out-of-equilibrium physics, the transport
problem is investigated in the semiclassical limit, where we
assume that a coherent input field is continuously driving
the waveguide. In this case, the resulting dynamics for

the trapped fields are of the driven NLSE nature and the
transmission spectrum in the linear and nonlinear regimes
can be studied. In the linear case the setup realizes a text-
book transmission problem where the transmission reso-
nances and the bandgap due to periodicity are observed.
In the nonlinear case, the interplay between the nonlinear-
ity and the lattice potential is manifest. We further per-
form a linear stability analysis to investigate the feasibility
of observing the transmission spectra. Our analysis reveals
that only the lowest branch of the transmission spectra
in the multi-valued region will be populated. We briefly
mention a possible method to stabilize other branches.

System. – Figure 1 depicts a schematic diagram of
our proposed setup, an optical waveguide interfaced with
an ensemble of cold atoms, and the EIT-based atomic
level configuration. We note that possible experimental
platforms can be based on a hollow core fiber filled with
ultracold atoms [20–24] or a tapered fiber evanescently
coupled to cold atoms trapped near the surface of the
fiber [25,26]. The resulting dynamics is formally simi-
lar to that of a BEC in an optical lattice and also sys-
tems studied in nonlinear optics. Our system, however,
exhibits advantages such as a more efficient preparation
of the source (drive), the ability to control the (effective)
mass and the (EIT-induced) interaction parameters over
a wide range of values. Finally, we note that the proposed
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Fig. 1: (Colour on-line) Schematic diagram of the system con-
sisting of an optical waveguide interfaced with an ensemble of
cold atoms. Two counterpropagating control fields, Ω±, drive
the 4-level atoms and create a Bragg grating that traps the in-
cident light Ψ+. The modulation in the atomic density induces
an effective periodic potential acting on the trapped light. The
trapped stationary dark-state polaritons formed in the waveg-
uide can be made to obey the nonlinear Schrödinger equation
with optically tunable interaction parameters.

system also allows the study of out-of-equilibrium quan-
tum many-body physics, which we plan to investigate in
the future.

As described in [15,16,27,28], the dark-state polari-
ton operators describing the trapped fields are Ψ̂± =
g
√

2πn0Ê±/Ω±, where Ê± are the slowly varying parts
of the trapped quantum fields and Ω± = Ω are classical
control fields with ± denoting the directions the fields are
travelling in; n0 is the mean density of atoms coupled to
the waveguide and g is the atom-field coupling strength.
Introducing the symmetric and anti-symmetric combina-
tions of the polariton operators Ψ = (Ψ+ + Ψ−)/

√
2 and

A = (Ψ+ − Ψ−)/
√

2, A can be shown to adiabatically
follow Ψ, i.e., A = −ik0Lcoh(mR/m)∂zΨ, in the limit
of large optical depth. k0 is the wave number of the
lattice potential and Lcoh = |∆0|2+(Γ/2)2

Γ1Dn0|∆0| is the charac-
teristic length scale, termed the coherence length [16];
m = − Γ1Dn0

4νg(∆0+iΓ/2) is the complex effective mass and mR

is the real part of m; νg ≈ νΩ2/(πg2n0) is the group
velocity with ν the velocity in an undoped fibre; ∆0 is
the two-photon detuning shown in fig. 1; Γ1D denotes
the sponteneous emission rate into the guided modes; Γ
is the total spontaneous emission from the excited states
|b⟩ and |d⟩.

A polaritonic lattice potential can be introduced by
creating a periodic modulation in the atomic density:
n = n0 + n1 cos2(k0z) with n1 ≪ n0 [19]. In this case
the dynamics of the symmetric polariton operator is gov-
erned by the NLSE:

i∂tΨ = − 1
2m

∂2
zΨ + 2V cos2(k0z)Ψ + 2χΨ†Ψ2, (1)
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Fig. 2: (Colour on-line) (a) The real part of the interaction
parameter χ̄ as a function of the one-photon detuning ∆p/Γ
and Rabi frequency Ω/Γ. (b) The effective polaritonic lattice
depth as a function of the Rabi frequency Ω/Γ.

where V is an effective lattice depth and χ an effec-
tive polariton-polariton interaction strength. Substituting
Ψ±(z, t) = ψ±(z, ϵ)e−iϵt into the above equation yields the
following dimensionless coupled mode equations:

∂z̄ψ+ − i

2
m

lcohmR
(ψ+ − ψ−) − ilcoh

2

[
ϵ̄− V̄ − V̄ cos(2z̄)

− χ̄

2
(ψ+ + ψ−)†(ψ+ + ψ−)

]
(ψ+ + ψ−) = 0, (2)

∂z̄ψ− − i

2
m

lcohmR
(ψ+ − ψ−) +

ilcoh

2

[
ϵ̄− V̄ − V̄ cos(2z̄)

− χ̄

2
(ψ+ + ψ−)† (ψ+ + ψ−)

]
(ψ+ + ψ−) = 0, (3)

where z and ψ± have been scaled by 1/k0,
√

k0 and
other effective interaction parameters by the recoil energy
ER = k2

0/(2mR), except χ which has been further scaled
by 1/k0; lcoh = k0Lcoh quantifies the ratio between the co-
herence length and the lattice constant. We note in pass-
ing that the above coupled mode equations are similar,
but not equivalent, to the nonlinear coupled mode equa-
tions arising in the study of nonlinear wave propagation
in one-dimensional periodic structures [29].

In terms of bare optical parameters, the dimension-
less lattice depth and nonlinearity are given by V̄ =
ΛΓ2

1Dδn0n1|∆0|
8Ω2k2

0(∆2
0+Γ2/4) and χ̄ = Λ2Γ1D∆p

4lcoh(∆2
p+Γ2/4)

(
1 − i Γ

2∆p

)
, where

Λ = Ω2/(Ω2 − δ∆0/2). ∆p and δ are the single- and
two-photon detunings shown in fig. 1. For the optical pa-
rameters, we assume δ = −0.01, ∆0 = −50, Γ1D = 0.2,
n0 = 107m−1, n1 = 106m−1, k0 = 104m−1, where
all the frequencies are in units of the spontaneous emis-
sion rate, Γ. With these values, which are within reach
of near-future experiments in tapered and hollow core
fibers [20–26], a broad range of effective interaction pa-
rameters can be obtained as depicted in fig. 2.

Equation (1) is equivalent to the Gross-Pitaevskii equa-
tion with an optical lattice potential, showing formal
similarity between the proposed photonic system and a
BEC-based system. While transport problems involving
cold atoms and BECs have been studied extensively [4–12],
our proposal utilizes a fundamentally different system
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where the tunably interacting fields are hybrid light-
matter excitations and therefore offer a complementary
system with distinct advantages. One important advan-
tage is that the non-equilibrium driving conditions arise
much more naturally in the present system. Preparing a
coherent source of an atomic BEC is much more difficult
compared to preparing a coherent source of photons, i.e.,
a laser, although there have been a great progress in pro-
ducing a guided matter waves [11,30–32]. The proposed
system also allows efficient measurements of the output
intensities and correlation functions using standard opti-
cal methods, which are difficult to perform in experiments
involving BECs.

In this letter, we investigate the transport dynamics
in the situation depicted in fig. 1, where an input field
impinges on the waveguide from the left. We specify
the natural boundary conditions ψ+(z = 0) = α and
ψ−(z = d) = 0, where α depends on the field strength
of the driving laser impinging from the left and d = k0L
is the dimensionless length of the waveguide. The trans-
mission spectrum, i.e., the transmittivity as a function of
the probe field detuning ϵ̄, is investigated in both the lin-
ear and nonlinear regimes in the semiclassical limit with
emphasis on effects of the lattice potential. Finally, a lin-
ear stability analysis is performed to show the prospect of
observing the characteristic features found in the trans-
mission spectrum.

Linear regime. – In the linear regime, our system
provides a realization of a classic transmission problem
of a particle moving through a potential. Thus, using
the periodic optical medium, it is possible to build a tun-
able optical experiment to simulate the Schrödinger equa-
tion in a controlled environment using stationary photons.
Moreover, the shape of the photonic potential can be en-
gineered, by carving out the atomic density distribution
as shown in [19], to test other classic text-book problems.
Note that the regime can be achieved without the 4th
level in fig. 1, which alleviates experimental difficulties
considerably.

Figure 3 shows the transmittivity as a function of
the input field detuning for two different values of V̄
for lcoh = 0.25 with the total loss determined by β =
(d/lcoh)(Γ/|∆0|) = 12π/50 ≈ 0.75.

When V̄ = 0, i.e., when Ω/Γ is large enough, there
are transmission peaks at the resonances ϵ̄0 = (nπ)2 for
n = 1, 2, 3, . . . and at an additional point ϵ̄0 = 1. These
transmission resonances are an artefact of the Bragg trap-
ping produced by the interaction of the counterpropagat-
ing control fields with the atoms [16]. As Ω/Γ is tuned
down to increase the effective potential depth to 1, the
continuum shifts towards right by 2V̄ (maximum poten-
tial height) as expected, and additional resonances develop
in ϵ̄ < 2V̄ signifying bound states. The energy of the first
bound state can be readily calculated within the pertur-
bation theory as V̄ − V̄ 2/8, which matches the starting
point of the first resonance in the figure. Furthermore, the
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Fig. 3: Transmission spectra for lcoh = 0.25, d = 3π, β =
12π/50 ≈ 0.75, V̄ = 0 (a), and V̄ = 1.0 (b). The bound state
and the first bandgap are clearly shown in (b).

locations of other resonances can be approximated from a
generalization of the free-field resonance points d

√
ϵ̄ = nπ

to d
√
ϵ̄− V̄ + V̄ 2/8 = nπ, such that only the quasi-kinetic

energy part is used to determine the resonance condition.
This approximation works well if the input field detuning
is much larger than the effective lattice depth, i.e. ϵ̄ ≫ V̄ ,
because in this case the effects of the potential is per-
turbative and the solution is expected to be close to the
free-field case.

Non-linear regime. – The nonlinear transport prob-
lem in the presence of a potential has been studied in detail
in various physical systems. As we have explained earlier,
however, the present system offers unique advantages over
the previous works: tunability of the parameters, large
nonlinearity and readily available coherent sources. We
focus on the transmission spectrum as an example of the
transport problem and study the interplay between the
nonlinearity and periodicity.

As we tune the single-photon detuning ∆p from a posi-
tive to a negative value, the self-nonlinearity changes and
the magnitude and the direction of the nonlieanr shift
changes. This is depicted in fig. 4(a) where the trans-
mission spectra for χ̄ = −0.02, 0, 0.02 are shown by the
thin (red), dashed (blue) and thick (black) curves, respec-
tively. Higher magnitudes of nonlinearity, corresponding
to smaller ∆p, result in lower transmission peaks due to
higher nonlinear losses. The sign and magnitude of χ̄ can
be tuned by varying, for example, the single-photon de-
tuning ∆p as shown in fig. 2(a).

Fixing χ̄ and increasing the input field strength α has
similar effects on the transmission spectrum to fixing α
and increasing χ̄. This is expected because the effective
photonic nonlinearity inducing the nonlinear shift is deter-
mined by χ̄|ψ̄|2, where the overbar denotes averaging. |ψ̄|2
of course depends on the value of the driving coherent field
amplitude α, but because of the nonlinearity, the exact
nature of this dependence is not obvious. To better un-
derstand the physics, we have investigated the amount of
shift of the first transmission peak, with respect to the lin-
ear case, as a function of the effective nonlinearity, χ̄|α|2.
The result is depicted in fig. 4(b), where the solid line
(black) represents the shift for α = 0.5 and the triangular
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Fig. 4: (Colour on-line) (a) Transmission spectra for V̄ = 0.5,
lcoh = 0.25, α = 0.5, d = 3π, β ≈ 0.75, and three different
values of |χ̄|. For repulsive nonlinearity (χ̄ = 0.02, ∆p > 0),
one can see the shift of the transmission peaks to the right
(thick, black curve). For attractive nonlinearity (χ̄ = −0.02,
∆p < 0), the shift is in the opposite direction (thin, red curve).
(b) Nonlinear shift as a function of the effective nonlinearity,
χ̄|α|2, for different values of |α|. The solid line (black) and
the triangular points (red) correspond to α = 0.5 and 0.25,
respectively.
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Fig. 5: Transmission spectra for lcoh = 0.25, α = 1.0, χ̄ = 0.02,
d = 3π, β ≈ 0.75, and V̄ = 0 (a) and 1 (b).

points (red) correspond to α = 0.25. The nonlinear shift
depends only on the effective nonlinearity to a very good
approximation and furthermore, the dependence seems to
be almost linear for larger values of the effective nonlin-
earity. Therefore, one should be able to observe similar
effects for even lower values of nonlinearity.

Next, we investigate the effects of the polaritonic lat-
tice on the transmission properties of the photons in the
repulsive case, ∆p > 0. As we decrease Ω, the entire spec-
trum shifts to the right as shown in fig. 5. At the same
time, a gap develops where the transmission is strongly
suppressed. The result of the shift and the formation of
the bandgap is that the resonance peaks get pushed to-
wards each other as the polaritonic lattice deepens. Near
V̄ = 1.0, the second and the third peaks merge and a pecu-
liar feature is observed between ϵ̄ = 1.5 and ϵ̄ = 2.0: a hor-
izontal peak near the bandgap region appears, as seen in
fig. 5(b). As far as we are aware, this feature has not been
observed before and is a unique feature arising due to the
interplay between the nonlinear-shift and the bandgap. It
is easier to see the origin of this feature with more extreme
parameters as shown in fig. 6. A “duck head”-like feature
is observed, which arises due to stronger suppression of
the transmission at the tip of the transmission resonance
that falls on the edge of the bandgap. As lcoh is increased,

Fig. 6: Appearance of a “duck head”-like feature for small
coherence length. The parameter values are: lcoh = 0.1, α =
0.1, χ̄ = 0.1, d = 3π, β ≈ 0.94, and V̄ = 1.

the resonance peaks broaden and part of the “duck head”
structure gets absorbed, resulting in the horizontal peak
shown in fig. 5(b).

Linear stability analysis. – So far, we have focused
on the presence of multiple-valued transmission peaks,
since it is a common phenomenon in externally driven
nonlinear systems. At certain parameter regime we have
found that a “duck head” feature appears, which arises
due to the interplay between the nonlinearity and the
periodic lattice potential. More generally, three trans-
mission points may appear in the transmission spectra
for sufficiently strong nonlinearity, which we denote as
the upper (U), middle (M) and lower (L) branch. A
previous time-dependent–driving study in a similar BEC
setting suggests that only the lower branch is stable [6,33].
We performed a linear stability analysis to check the
stability of all three branches in the present system by
the following method. Imagine applying a small pertur-
bation (δψ ≪ 1) to the obtained stationary solutions
ψI0 : ΨI(z, t) = (ψI0(z) + δψ(z, t))e−iϵt, where I = U ,
M and L. Now, substituting this in eq. (1) and neglecting
higher-order terms, one obtains the equation in terms of
the perturbation δψ,

i
∂δψ

∂t
= − 1

2m

∂2δψ

∂z2 + (2V cos2(z) − ϵ)δψ

+ 4χ|ψI0|2δψ + 2χψ2
I0δψ. (4)

Figure 7 illustrates the stationary solutions of eqs. (2)
and (3) and the perturbed solutions found from eq. (4)
for the three branches. In our numerical calculation, we
have applied a small Gaussian profile as an initial per-
turbation and considered the following boundary condi-
tions: δψ(0, t) − i lcohmR

m ∂zδψ(0, t) = 0 and δψ(d, t) +
i lcohmR

m ∂zδψ(d, t) = 0. It can be clearly seen from
figs. 7(a) and (b) that the solutions of the upper and mid-
dle branches are not linearly stable. We have further cal-
culated the quantity,

Ξ =
ln{Re[δψ(z, t + δt)]} − ln{Re[δψ(z, t)]}

δt
, (5)
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Fig. 7: (Colour on-line) The solutions of the (a) upper, (b) middle, and (c) lower branches along with the perturbation are
shown as a function of space. The blue (solid) lines represent the solutions of eqs. (2) and (3), whereas the red (dotted) lines
show the behavior of the solutions along with the perturbation. Only the lower branch is stable.

which in the limit of δt → 0 and t → ∞, approaches
the largest eigenvalue of the perturbation mode evolving
under eq. (4) [34,35]. Explicit calculations show that the
eigenvalues for the upper and middle branches are positive
in the steady state and therefore unstable.

We therefore conclude that the resonant transport will
be suppressed during the propagation in the presence of
a strong nonlinearity. This is in good agreement with the
findings reported in [6,33]. It may, however, be possible
to stabilize the upper branch to experimentally access it
by applying a temporal modulation in the potential, as
shown in [6] for a double-well potential. We leave this for
a future work.

Summary and conclusion. – We have introduced a
slow light system exhibiting EIT nonlinearities that pro-
vides an interesting platform for investigating linear and
nonlinear out-of-equilibrium physics under the influence of
a potential. We have shown that through varying certain
optical parameters, such as single-photon detunings, one
can probe linear and nonlinear regimes with or without
the lattice potential and thereby observe interesting phe-
nomena in the transmission spectrum. Moreover, we have
observed that a “duck head”-like feature appears at the
edge of the bandgap that results from the interplay be-
tween the lattice potential and nonlinearity. We have also
performed a linear stability analysis in order to show which
branches of the transmission spectra can be populated.
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