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Abstract
We study the origin of ‘frozen’ photonic states in coupled Jaynes–Cummings–Hubbard arrays.
For the case of half the array initially populated with photons while the other half is left empty,
we show the emergence of a self-localized photon or ‘frozen’ states for specific values of the
local atom–photon coupling. We analyse the dynamics in the quantum regime and discover
important additional features that do not appear to be captured by a semi-classical treatment,
which we analyse for different array sizes and filling fractions. We trace the origin of this
interaction-induced photon ‘freezing’ to the suppression of the excitation of propagating
modes in the system at large interaction strengths. We discuss in detail the possibility of
experimentally probing the relevant transition by analysing the emitted photon correlations
both in the idealized lossless case and more realistic scenarios when reasonable losses are
included. We find a strong signature of the effect in the emitted photons statistics.

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the first proposals to realize strongly correlated many-
body states of light in resonator array architectures [1–3] a
rapid growth of interest in these structures has been seen
along several lines of investigation. Perhaps most recently,
significant attention has been paid to finding novel observable
non-equilibrium dynamical effects in modest-sized arrays,
both in the steady state of driven-dissipative systems [4–9]
and in explorations of coherent array dynamics [10–14].
Resonator arrays are in many ways ideal platforms for the
exploration of non-equilibrium quantum phenomena, allowing
relative ease of access to dynamical observables via localized
measurements of photon fields.

In this work, we investigate the time evolution of nonlinear
arrays, going beyond the one- or two-photon limit into a
strongly correlated many-body regime. We find evidence
for an interaction-induced ‘freezing’ of domain walls of

4 Authors to whom any correspondence should be addressed.

photons in initially half-filled one-dimensional array systems.
The resonator nonlinearity must be sufficiently large for
localization effects to set in, beyond which the photon
population remains trapped in half of the system. We show that
a semi-classical (SC) treatment similar to that first presented
in [11] for the limiting case of two coupled resonators predicts
a sharp transition between localized domain formation and
delocalized dynamics in which photons tunnel between both
halves of the system.

Going beyond the SC approach, fully quantum
calculations confirm the frozen photon dynamics for strongly
nonlinear arrays while also revealing features not present in
the SC calculation.

In some ways, our findings can be seen as a photonic
analogue of the non-equilibrium dynamics of XXZ chains
where it has been recently shown that strong nearest-neighbour
interactions can lead to the formation of polarized domains
which strongly influence the transport properties of spin
chains [15]. These ferromagnetic domains have been shown to
be stable. They are spectrally separated from mobile states of
the system which are capable of breaking them.
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Figure 1. Schematic of our system and the initial conditions
considered. The left half of a one-dimensional array with M
resonators (here M = 4) is initialized in a Fock state of N0 photons
(in this particular schematic, N0 = 4). Each resonator is coherently
coupled to its two nearest neighbours with the associated tunnelling
rate J. Each resonator is also coherently coupled to a TLS with a
Jaynes–Cummings coupling parameter g.

We show a related but distinct photonic equivalent. Our
‘domains’ of photons remain trapped over timescales larger
with respect to characteristic system rates due to a vanishing
overlap between the initial pumped states we consider and
propagating modes of the system in the limit of large local
interactions.

2. The system

The system we consider is a one-dimensional linear array
of M coupled optical resonators. Each resonator features a
relevant mode of frequency ωr, and is coherently coupled to
its nearest neighbours, as shown schematically in figure 1. A
single two-level system (TLS) with the transition frequency ωa

is coherently coupled via a Jaynes–Cummings interaction to
each resonator, with coupling strength g. In this work, we
consider only the on-resonance case " = ωr − ωa = 0.
The governing Hamiltonian is then the well-known Jaynes–
Cummings–Hubbard (JCH) Hamiltonian:

Ĥ =
∑

j

[(
ωrâ

†
j â j + ωaσ̂

+
j σ̂−

j + g
(
â†

j σ̂
−
j + â jσ̂

+
j

)]

− J
∑

⟨ j, j′⟩
â†

j â j′ . (1)

Here, â j is the photon destruction operator for the resonator j
and σ̂±

j are the raising/lowering operators for the TLS coupled
to the resonator j. The set of nearest-neighbour resonators is
denoted by ⟨ j, j′⟩. The Hamiltonian Ĥ commutes with the total
excitation number operator

N̂ =
∑

j

(
â†

j â j + σ̂+
j σ̂−

j

)
. (2)

We remove the free evolution of the resonators coupled to the
TLS by transforming to a frame rotating at ωr = ωa, such
that only the competing terms governing the atom–resonator
interaction and resonator tunnelling remain. We note that for
the form of the Jaynes–Cummings coupling to be valid in
equation (1), we must operate in the regime g ≪ ωr = ωa.
Throughout this work, we consider initial states with one half
of the system contiguously populated with N0 photons per

resonator, while the other half remains empty. The TLS in
each resonator is initialized in its ground state:

|$(0)⟩ =
M/2∏

j=1

|g, N0⟩ j ⊗
M∏

j=M/2+1

|g, 0⟩ j, (3)

where |g, n⟩ j denotes a photonic Fock state of n photons in the
resonator j.

Generalizing [11] to the case of an extended system, of
central interest in the following analysis will be the photon
imbalance Z(t) between the left (L) and right (R) halves of the
system, as defined by

Z(t) =
∑M/2

j=1⟨â
†
j â j⟩(t) −

∑M
j=M/2+1⟨â

†
j â j⟩(t)

∑M
j=1⟨â

†
j â j⟩(t)

. (4)

In particular, we find that time-averaging Z(t) neatly
encapsulates details of the photon dynamics. We denote such
time averages in the following by Z̄. Throughout this work, Z̄
is defined as the average of Z(t) over the interval tJ ∈ [0, 20].
We have empirically found that this interval is sufficiently
long to capture the nature of the long-time dynamics and short
enough that the array is in a non-trivial state at the end of the
interval once losses are included. Values of Z̄ close to zero
imply the delocalization of photons across the two halves of
the system, either oscillating back and forth in some manner
or reaching an approximately even distribution. Meanwhile,
Z̄ ≈ 1 implies a photon population trapped in one side of the
system for a substantial period of time.

3. Semi-classical treatment

We begin our analysis of the dynamics of the system
equation (1) at the SC level, thereby making contact with
the related previous work by the authors of [11]. We first
use the Heisenberg equation of motion d

dt Ô = i[Ĥ, Ô]
to generate evolution equations for the photonic and TLS
operator expectation values. As the SC approximation entails
factorizing the expectation values of the operator products into
the products of expectation values (e.g. ⟨â†

j σ̂
−
j ⟩ = ⟨â†

j⟩⟨σ̂−
j ⟩),

we only need to generate equations for the three operators
â j, σ̂

−
j , σ̂ z

j .
Defining (α j, mj, z j) ≡ (⟨â j⟩, ⟨σ̂−

j ⟩, ⟨σ̂ z
j ⟩), we obtain the

set of coupled differential equations for their evolution:

α̇ j = − iωrα j − igmj + iJ((1 − δ j,1)α j−1 + (1 − δ j,M )α j+1)

ṁ j = − 2iωamj + igα jz j

ż j = − 2ig
(
α jm∗

j − α∗
j m j

)
, (5)

where the delta functions take into account the open boundary
conditions.

An SC description is not capable of properly describing
the quantum mechanical Fock states of equation (3). We
therefore take an array pumped with coherent states with
the same photon number â†

j â j = N0 as initial conditions of
equations (5):

α j =
{√

N0 : j ! M
2

0 : j > M/2,

z j = −1,

mj = 0.

(6)
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Figure 2. The time-averaged photon imbalance Z̄ according to an
SC treatment of an M-resonator array. The transparent blue plane
marks the critical coupling predicted by SC theory for the case of
M = 2 resonators [11].

We note that it has been shown that for the case of
M = 2 resonators, a qualitative change in the population
imbalance dynamics occurs sharply at a critical coupling
gc ≈ 2.8

√
N0J [11]. Specifically, for g < gc, photons move

between the resonators with a characteristic tunnelling time.
Around g = gc, this period diverges, leading to a ‘self-trapped’
regime for g > gc in which the photon population remains
localized in one resonator.

With these results in mind, we now look at the time-
averaged photon imbalance Z̄ for larger arrays as calculated
by the time evolution of the set of equations (5), as shown
in figure 2. We see that SC theory still predicts a sharp
localized/delocalised transition at the critical coupling g = gc,
regardless of the system size M.

4. The fully quantum regime

Going now beyond SC theory, which can only be valid in the
limit of a large number of excitations, we investigate whether
an analogue of the localization predicted by the SC equations
persists in the fully quantum regime of a few (N0 ! 4)
excitations. Explicitly constructing a matrix representation of
the Hamiltonian of equation (1) and time evolving by applying
the unitary operator U (t) = exp(−iHt) to the initial state,
|$(t)⟩ becomes numerically challenging beyond even M = 2
resonators. The two-species nature of the JCH Hamiltonian,
coupled with the necessity of retaining a sufficient number
of photons per resonator in calculations so as to avoid the
truncation error, leading to a large Hilbert space dimension.
Some progress is possible by projecting the dynamics into
fixed particle number subspaces; however, we turn instead
to a compact matrix product state (MPS) representation of
the wavefunction [16]. This representation is ideally suited
for representing the state of one-dimensional systems with
at most nearest-neighbour couplings as in our case. Efficient
and accurate Hamiltonian evolution of the MPS is achieved
via the time-evolving block decimation (TEBD) algorithm
[17].

(a) (b)

Figure 3. Photon number evolution for an M = 6 resonator system
with the first three resonators pumped with N0 = 4 photon Fock
states at t = 0. (a) A weak nonlinearity g = 0.1J. (b) Strong
Jaynes–Cummings nonlinearity g = 15J. The apparent reduction in
the mean photon number per site over time is accounted for by the
TLS excitation—we have checked that the total excitation in the
system is preserved by our numerics to 1% over the simulation
interval. Simulation parameters: all calculations kept a minimum of
nmax = min(N0M/2, 7) photons per resonator in the computational
basis. An MPS truncation parameter of χ = 100 was found to be
sufficient to avoid cumulative errors.

Figure 3 shows TEBD simulations of the local photon
density in an M = 6 resonator array with the left half initially
pumped with Fock states of N0 = 4 photons, for two Jaynes–
Cummings nonlinearities, one weak and one strong (relative to
the photon tunnelling rate J). For weak nonlinearities, photons
initially oscillate between the two halves of the system,
reflecting from the boundaries and eventually leading to a
uniformly distributed population, i.e. zero photon imbalance
Z̄ ≈ 0.

For arrays with strong nonlinearities, on the other hand,
such as shown in figure 3(b), photons remain essentially
trapped on the left-hand side of the system for very long
times (>98% of the photon population remains in the first
three sites over the simulation window). The self-trapping
phenomenon predicted by SC theory then seems to persist
in the fully quantum regime of few photons.

Figure 4 however characterizes the emergence of these
domains of ‘frozen’ photons, showing that SC theory is
insufficient to fully capture all qualitative details of the effect
in the low-excitation regime. Figure 4(a) shows the results
of rigorous TEBD simulations for arrays of different sizes,
pumped with different numbers of initial photons. We see that
the ‘transition’ between delocalized (Z̄ ≈ 0) and localized
(Z̄ ≈ 1) dynamics becomes broader with increasing system
size M, and never resembles the sharp SC transition of figure 2.
The qualitative trend, however, towards localization with
increasing nonlinearity g occurs irrespective of M. Figure 4(b)
meanwhile shows that for N0 > 1, the magnitude of the initial
excitation does not significantly affect the rate at which the
system approaches the ‘frozen’ regime. Interestingly, however,
we find that the case of a single photon pumped into the left
half of the system never exhibits localization behaviour, no
matter how large is the Jaynes–Cummings nonlinearity g.

We can understand this qualitative difference in behaviour
between N0 = 1 and N0 > 1 by examining the initial state
|$(0)⟩ in the eigenbasis of the Hamiltonian Ĥ. We work in
the Hilbert subspace spanned by eigenvectors {$ j} commuting
with the total excitation operator N̂ with the eigenvalue
n = N0M/2 and calculate the overlap of the initial state with
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(a)

(b)

Figure 4. An exploration of the time-averaged photon imbalance Z̄.
(a) As a function of the system size M, holding the initial excitation
N0 fixed. (b) Z̄ as a function of the initial excitation N0, holding
instead the system size fixed.

(a) (b)

Figure 5. The projection of the initial state |$(t = 0)⟩ into each of
the eigenstates spanning the subspace consistent with the total
number of excitations in the system, N0M/2, for the simplest case of
a dimer of M = 2 resonators. (a) Overlaps for an initial excitation of
just N0 = 1 photon in the first resonator. (b) The corresponding
projections for an initial state of N0 = 4 photons. Both plots show
the evolution of the different projections as the Jaynes–Cummings
nonlinearity g is ramped up. Eigenmodes marked ‘P’ (for
‘propagating’) have a nonzero photon correlation function C across
the two halves of the system. Modes marked ‘N’ have vanishing C
as g increases. Note that the larger dimension of the subspace for
N0 = 4 results in more eigenstates in (b).

each of these eigenstates ||⟨$(0)|$ j⟩||2. These overlaps are
presented in figure 5 for a minimal ‘array’ of M = 2 resonators
with both N0 = 1 and N0 = 4 initial photons, as a function of
the nonlinearity g. As expected, we see a shuffling of excitation
between various eigenmodes as g changes. The properties of
the eigenmodes having significant overlap with the initial state
for a given nonlinearity g determine the properties of the time
evolution of the system. Of particular relevance is a measure
of the ‘photon current’ through the centre of the system, or
alternatively the degree of photon delocalization across the
halves of the array. Both these quantities are reflected in a
finite value of the expectation value C = |⟨â†

M/2âM/2+1⟩|. On
measuring C for each of the modes |$ j⟩, we find that the initial

(a) (b)

(c) (d)

Figure 6. Charting the localization–delocalization transition for a
minimal M = 2 resonator array through both the time-averaged
photon imbalance Z̄ (top row) and the time-averaged photon
correlator ḡ(2) (bottom row) for increasing initial photon number N0.
Z̄ and ḡ(2) are calculated for systems with no losses (left column)
and for small finite loss rates γ = κ = 0.05J.

state for the case of a single pumped initial photon N0 = 1 has
a finite overlap with ‘current-carrying’ modes even in the limit
of a large nonlinearity g. In contrast, only non-propagating
modes are substantially excited for larger excitations N0 > 1,
leading to the frozen domains of figure 3(b).

5. Probing the frozen dynamics in an experiment

Finally, we present calculations showing experimentally
relevant photonic observables which give signatures of the
transition between the localized and delocalized dynamics.
While the photon number imbalance Z̄ between the two halves
of the system may be measurable via quantum non-demolition
measurements on frequency shifts of the TLS, we focus here
on purely photonic observables that can be extracted from the
emitted photons from the structure. In particular, we find that
the measurement of the local second-order photon correlations
g(2)

L = ⟨â†
j â

†
j â jâ j⟩/⟨â†

j â j⟩2 yields signatures of the transition.
Figure 6 shows that the freezing of population in one-half of the
system (where the photon imbalance is Z̄ ≈ 1) is accompanied
by a qualitative change in the on-site correlations from g(2) > 1
to g(2) ≈ 1. Figures 6(a) and (c) show that both the photon
imbalance and the time-averaged correlator g(2) approach a
limiting behaviour as the initial number of photons grows
large, with a sharp transition in observables in the vicinity of
the critical point predicted by SC theory g = gc.

Experimentally, the photon statistics encoded in g(2) are
mapped on to the statistics of photons leaking from resonators
with finite line widths as characterized by a loss rate γ . To
assess whether the correlator g(2) can serve as a probe of the
transition in realistic settings with a finite resonator loss rate,
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we include Markovian photon loss processes at rate γ and
TLS de-excitation at rate κ via a quantum master equation
formalism, time evolving the system density matrix ρ from
the initial state of equation (3) under the evolution:

ρ̇(t) = −i[H, ρ] +
∑

i=L,R

(γL[ai] + κL[σ−
i ]), (7)

where the action of the dissipator L is defined as L =
(2OρO† − O†Oρ − ρO†O)/2. Figures 6(b) and (d) show that
the introduction of a finite loss rate acts to smear the transition,
pushing localization to larger nonlinearities g. However, for
sufficiently large initial photon pumping (around N0 ≈ 7), the
statistics of the emitted photons can be used to infer a change
from delocalized physics (characterized by ḡ(2) > 1) to the
localized case (ḡ(2) ≈ 1). The value of gamma we use leads
to a maximum ratio g/γ ≈ 200, within reach of near future
experiments in circuit QED architectures [18].

6. Conclusions

We have demonstrated the existence of a novel strongly
correlated regime of ‘frozen’ photons in optical resonator
arrays with large Jaynes–Cummings-type nonlinearities. For
a sufficiently large initial excitation of part of the resonator
array, the photon dynamics are dramatically suppressed due to
a very small overlap with propagating modes of the system.
As little as two pumped photons per resonator are sufficient to
observe signatures of ‘frozen’ domains of photons, allowing
access to the truly quantum few-excitation regime.
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[5] Bamba M, Imamoğlu A, Carusotto I and Ciuti C 2011 Origin
of strong photon antibunching in weakly nonlinear photonic
molecules Phys. Rev. A 83 021802

[6] Leib M and Hartmann M 2010 Bose–Hubbard dynamics of
polaritons in a chain of circuit quantum electrodynamics
cavities New J. Phys. 12 093031

[7] Carusotto I, Gerace D, Tureci H, Liberato S De, Ciuti C
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