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1Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
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We present a generalized Greenberger-Horne-Zeilinger (GHZ) theorem, which involves more than two local
measurement settings for some parties, and cannot be reduced to one with less settings. Our results hold for an
odd number of parties. We use a set of observables, which are incompatible but share a common eigenstate, here
a GHZ state. Such observables are called concurrent. The idea is illustrated with an example of a three-qutrit
system and then generalized to systems of higher dimensions, and more parties. The GHZ paradoxes can lead to,
e.g., secret sharing protocols.
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Einstein, Podolsky and Rosen (EPR) [1] wanted to show
that the mathematical formalism of quantum mechanics,
though consistent and giving correct predictions, is incom-
plete. This gave birth to the fundamental debate “Can quantum
mechanical description of physical reality be considered com-
plete?” Theories compatible with the EPR’s ideas are called
“local-realistic (LR) theories.” The basic notion introduced
by EPR was the one of (local) elements of reality. These
are values of possible measurements of an observable, which
can be, in principle, determined without actually performing
a measurement. They argued that, if one considers perfect
correlations of certain measurements on pairs of entangled
systems (say A and B), such values are an inevitable conse-
quence. Perfect correlations are such that a result on the A side
of the experiment, precisely determines the value of another
measurement on the B side. If systems are far enough from
each other, this means that one can determine the value at B
without any disturbance. Thus, it must be defined even without
the act of measurement on side A. As elements of reality are
missing from the quantum formalism, it is incomplete.

Bell countered the EPR interpretation of quantum theory
[2]. He showed that quantum correlations, for two spins 1/2
in a singlet state, cannot be reproduced by LR theories,
as they violate an inequality satisfied by all LR predic-
tions. For other early developments, see, e.g., the review of
Clauser and Shimony [3]. Experiments, up to some loopholes,
invalidate local realistic models of quantum states (for a
current review see [4]). The research moved to finding new
nonclassical phenomena for systems more complicated than
two spins 1/2 (see, e.g., [5]). As applications of the highly
nonclassical correlations were found, this sparked off quantum
information science. Now we have quantum key distribution,
quantum teleportation, generators of truly random numbers,
etc., [6–9].

*rjhui@hanyang.ac.kr
†hyoung@hanyang.ac.kr
‡marek.zukowski@univie.ac.at

Greenberger, Horne, and Zeilinger (GHZ) [10] presented
an “all-versus-nothing” conflict between local realism, in the
form of EPR elements of reality and quantum mechanics,
known now as the GHZ paradox. Mermin [11] gave a very
simple GHZ contradiction for predictions for a three-qubit
GHZ state |!⟩ = 1√

2
(|000⟩ − |111⟩) shared by three, distant

from each other, observers. They perform randomly chosen
local measurements of Pauli observables, σ̂ x

k or σ̂
y
k , where

k = 1,2,3 numbers the observers. Such measurements, in
four cases, form compatible composite observables v̂1 =
σ̂ x

1 ⊗ σ̂
y
2 ⊗ σ̂

y
3 , v̂2 = σ̂

y
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y
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y
1 ⊗ σ̂

y
2 ⊗ σ̂ x

3 , and
v̂4 = −σ̂ x

1 ⊗ σ̂ x
2 ⊗ σ̂ x

3 , as |!⟩ is a common eigenstate of these
four operators. We have perfect correlations: ⟨!|v̂l|!⟩ = 1
for all l. With a given perfect correlation, according to EPR,
one can define the elements of reality. One can predict with
certainty and without any disturbance the remote measurement
outcome of the third local observable, once the other two local
results of measurements are known. The elements of reality
m

x(y)
k = ±1 related to σ̂

x(y)
k , to reflect the correlations, must

satisfy the following relations: mx
1m

y
2m

y
3 = 1, m

y
1m

x
2m

y
3 =

1, m
y
1m

y
2m

x
3 = 1, and mx

1m
x
2m

x
3 = −1. However, all these

multiplied imply 1 = −1. The elements of reality are thrown
overboard, and so is any attempt to deduce local realism from
quantum perfect correlations.

GHZ-type all-versus-nothing theorems, unlike Bell’s, do
not use statistical inequalities. The GHZ theorem was general-
ized to more complex systems, such as multipartite and/or
high-dimensional ones [12–16], and includes “all-versus-
something” GHZ-type contradictions [17]. Still, there are
many unstudied cases, including some simple ones, e.g., a
genuine four-qubit GHZ theorem with two settings per qubit
and a genuine three-qutrit GHZ theorem with multisettings.
Recently, Tang et al. investigated a four-qubit GHZ contradic-
tion with many measurement settings [18].

Here, we show that one can have GHZ contradictions for
three or more qudit systems, which involve more than two
settings for some of the observers, and cannot be reduced
to ones with less settings. To this end, we employ a set
of so-called concurrent composite observables. They do not
commute; however, they still share a common eigenstate,
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here a generalized GHZ state [14,16]. Our local observables
are obtained by using unitary operations involving phase
shifters. They can be realized with multiport beam splitters
(see Refs. [12,14,19,20]). GHZ-type contradictions find ap-
plications in various quantum information tasks, especially in
variations of secret sharing protocols [21], and reduction of
communication complexity [22]. Thus, an irreducible class of
such “paradoxes” allows a different class of such quantum
applications.

We illustrate the concurrent observable idea, and construct
a GHZ theorem for three 3d-dimensional systems involving
three settings (d is a positive integer). We extend it to three
systems of dimension D = Md, and for M settings. Finally,
we generalize our GHZ theorem to an odd number of parties,
N , and systems of dimension D = Nd. If N is prime the
paradoxes cannot be reduced to less settings.

With concurrent observables Lee et al. [14] proposed a
GHZ theorem for an N -qudit system where N is odd and D
is even. Recently, Ryu et al. [16] gave a generalized version
of a GHZ theorem for an N -qudit system. They also used
concurrent observables. This allowed one to extend the GHZ
theorem beyond the results of Refs. [12,13,17]. Here we follow
an extension of the approach introduced in Ref. [16]. We use
unitary observables, such as M̂ =

∑D−1
n=0 ωn|n⟩m⟨n|, where

ω = exp(2π i/D). Operator M̂ can be paired with a Hermitian
one Ĥ by setting M̂ = exp(iĤ ). The complex eigenvalues of
M̂ can be associated with specific measurement results. Such
a unitary representation is very handy [13,14].

Construction of a GHZ theorem for a three-qudit system.
Consider the following three-qudit GHZ state:

|ψ⟩ = 1√
D

D−1∑

n=0

|n,n,n⟩, (1)

where {|n⟩}D−1
n=0 denotes the basis states for a qudit system.

Take a composite operator V̂ ≡ X̂ ⊗ X̂ ⊗ X̂, where X̂ =∑D−1
n=0 |n⟩⟨n + 1 mod D|. One has V̂ |ψ⟩ = |ψ⟩. We con-

struct concurrent observables by applying unitary operations
Û = P̂1 ⊗ P̂2 ⊗ P̂3 on V̂ with phase shift operators given by
P̂k =

∑D−1
n=0 ωfk (n)|n⟩⟨n|, where ω = exp(2π i/D). For each n,

if “phases” fk(n) satisfy the condition

f1(n) + f2(n) + f3(n) = γn, (2)

for some integer γ , the unitarily transformed observables
V̂U = Û V̂ Û † are concurrent and the GHZ state (1) is their
common eigenstate with eigenvalue ω−γ . For the phases
satisfying fk(n) = αkn, with a rational number αk , each local
observable X̂(α) = P̂ X̂P̂ † is given by

X̂(α) = ω−α

(
D−2∑

n=0

|n⟩⟨n + 1| + ωαD|D − 1⟩⟨0|
)

. (3)

Two local observables X̂(α) and X̂(β) are inequivalent unless
α − β is an integer [16].

Consider a three-qudit GHZ state (1) shared by three
distant parties, one qudit each. Assume that the first two
parties can measure their qudits using one of three observables
(X̂,Ŷ ,Ẑ), whereas the third party chooses between two, say

X̂ and Ŷ . The outcomes of each measurement are ωl , where
l = 0,1, . . . ,D − 1.

Take concurrent observables obtainable by operations
Û with phases fk(n) ∈ {0,n/3,2n/3}. Set X̂ = X̂(0), Ŷ =
X̂(1/3), and Ẑ = X̂(2/3). The GHZ state (1) is an eigenstate of
the following observables (the last column gives the associated
eigenvalues of the observables):

O1 = X̂ ⊗ X̂ ⊗ X̂ 1,

O2 = Ŷ ⊗ Ẑ ⊗ X̂ ω−1,

O3 = Ẑ ⊗ Ŷ ⊗ X̂ ω−1,

O4 = X̂ ⊗ Ẑ ⊗ Ŷ ω−1,

O5 = Ŷ ⊗ Ŷ ⊗ Ŷ ω−1,

O6 = Ẑ ⊗ X̂ ⊗ Ŷ ω−1.

(4)

This holds because the phases fk(n) of each observable Oi

satisfy condition (2).
Local realistic outcomes of the measurements, to reproduce

correlations (4), must obey

ωx1ωx2ωx3 = 1,

ωy1ωz2ωx3 = ω−1,

ωz1ωy2ωx3 = ω−1,

ωx1ωz2ωy3 = ω−1, (5)

ωy1ωy2ωy3 = ω−1,

ωz1ωx2ωy3 = ω−1,

where ωmk is the kth party’s outcome, for m = x,y,z. These
LR relations give a GHZ-type contradiction with quantum
mechanics:

(1) Divide the six LR predictions (5) into two subsets of
correlations:

{A1,A2,A3} = {ωx1ωx2ωx3 ,ωy1ωz2ωx3 ,ωz1ωy2ωx3}

and

{B1,B2,B3} = {ωx1ωz2ωy3 ,ωy1ωy2ωy3 ,ωz1ωx2ωy3}.

(2) Multiply these LR predictions to get
∏3

k=1 AkBk , where
x is the complex conjugate of x.

(3) This gives ω3(x3−y3)−1 = 1, which we call the LR condi-
tion. Since ω = exp(2π i/D), if D = 3d, where d is an integer,
there is no integer solution of ξ for the equation 3ξ − 1 ≡ 0
mod D. Hence, we have a GHZ-type contradiction.

It is worth noting, that the third party uses just two settings,
while the first two parties use three. Above, the third party
chooses between X̂ and Ŷ , but due to the symmetry, one has
a similar contradiction for the other two cases of X̂ and Ẑ,
or Ŷ and Ẑ. In general, the LR condition leads to ω3ξ−η3 = 1,
where ξ gives the difference between the LR values of two
observables selected by the third party, and η3 = 3|α3 − α′

3|.
Here, α3 and α′

3 are rational numbers associated with the
phases defining the two observables of the third party,
respectively. As α3,α

′
3 ∈ {0,1/3,2/3}, η3 is always a positive

integer, smaller than the number of local observables M ,
here M = 3. Since ω = exp(2π i/D) and D = 3d, the LR
condition is equivalent to the existence of an integer solution
for ξ satisfying 3ξ − η3 ≡ 0 mod D. This is impossible.
Hence, we get a GHZ-type contradiction.
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One cannot arrive at a GHZ contradiction by using a subset
of the correlations which involves just two settings, for the
first party or the second party. The correlation conditions
are equivalent to the following six equations (in a modulo
3 algebra) involving eight variables:

(x1) + x2 + (x3) = a,

y1 + z2 + x3 = 2, (∗)

z1 + (y2) + (x3) = 2,

(x1) + (z2) + y3 = 2, (6)

y1 + y2 + y3 = 2, (∗)

z1 + x2 + y3 = 2,

where in the case of our GHZ contradiction a = 0. The
brackets denote variables which will change their values during
our proof, below. Only if we put a = 2, are the conditions
consistent; that is, they can be satisfied with variables of integer
values (just put x3 = y3 = 2, and for all other variables put 0).
However, for our case of a = 0, this is impossible, as shown
above by our three-step method. Now, if we remove one of
the settings, e.g., the Ŷ of the first party, this removes the
second and fifth equation from the set, marked by (∗). As one
has a proper integer solution for the full set of equations with
a = 2, this solution also satisfies the four-equation subset, with
a = 2 in the first equation. Nevertheless, there is also a set of
integer values for all variables which fit the four equations in
the case of a = 0. One can do the following: take the values
of the variables for the case a = 2; next, lower the values
of x1 and x3 by one, and compensate this in the third and
fourth equations by increasing by one y2 and z2 (these two
variables appear only in the third and fourth equations, as
marked by the parentheses). Such operations change the value
of the left-hand side (LHS) of the first equation only, and thus
the right-hand side (RHS) must now be a = 0. All new values
of the variables are still integers; the four equations are satisfied
by them, for a = 0. Thus, there is no possibility of finding a
GHZ contradiction using only these four equations, as a set
of integer valued variables satisfies them. Ipso facto, our GHZ
argument necessarily involves all six correlations. Obviously,
the above argument still holds when one tries to remove any
other setting of the first or second party.

This does not preclude the possibility that for our system
and the state, for different sets of settings, one may get a GHZ
contradiction involving fewer settings. But this is not our aim.
Irreducibly multisetting paradoxes lead to quantum solutions
of secret sharing and reduction of communication complexity
problems, which cannot be related to two settings-per-party
GHZ paradoxes.

The question of a minimal set of measurements for the
given situation is an interesting open problem. Recently,
in Ref. [23] Lawrence addressed the GHZ contradiction
for N parties and D dimensional systems by using fewer
measurement settings, but the set of composite observables
he used is different from ours.

Arbitrary number of settings, M > 3. To this end, con-
sider the phases fk(n) = αkn ∈ {0,n/M, . . . ,(M − 1)n/M}.
Following a similar procedure as above one can construct 2M
concurrent composite observables, whose common eigenstate

is (1). The first two parties measure M different observables,
while the third party can measure arbitrary two observables
from the set of M [see Eq. (4)]. Following the method,
divide these 2M concurrent observables into two sets A
and B, and produce

∏M
k=1 AkBk . The LR condition is in the

form of ωMξ−ηM = 1. Here ηM = M|α3 − α′
3| with α3,α

′
3 ∈

{0,1/M, . . . ,(M − 1)/M}. If D = Md, there is no integer
solution for ξ satisfying Mξ − ηM ≡ 0 mod D, because ηM

is a nonzero integer, and ηM < M . We have a M-setting
tripartite (Md)-dimensional GHZ contradiction.

In the case of a prime M > 1, to show the irreducibility of
the number of settings required for such GHZ contradiction,
one can use a generalization of the argumentation using
Eqs. (6). One can build a set of equations of a similar kind
for the perfect correlations. Once again, one is able to show
that a subset of the equations involving less settings cannot
lead a GHZ contradiction. Whenever we remove one of the
settings for the first or second party, in the remaining subset of
equations there are always “lone” variables, which appear in
just one equation, just like y2 and z2 in (6). This is so, because
the method to construct our multisetting GHZ contradictions
uses cyclic permutations to get the sequences of composite
observables. Again one can find such value of the RHS of the
first equation such that variables of integer values satisfy the
full set. By proper changes of the values of the variables in
the first equation, and compensating changes of the “lone”
variables, one can always produce an integer solution for
the subset of equations, with RHSs as in the case of the
contradiction. For multipartite cases, this argument still works
for a prime number of settings, as we also will use the cyclic
permutations to construct the multipartite GHZ contradictions
(we will explain this below).

If M is a nonprime number, one can find a GHZ
contradiction with a subset of the perfect correlations. For
example, take a four-setting GHZ contradiction using local
observables defined by phases 0,1/4,2/4,3/4. In a subset of
perfect correlations, in which there are only observables with
the “phases” 0 and 2/4, there are no “lone” variables. This
subset of correlations can be found in Ref. [14] to give a GHZ
contradiction. Generally, the number of measurement settings
required for a contradiction can be reduced to one of prime
divisors of M .

More complex systems. One can generalize the method
to the N -partite D-dimensional case with N measurement
settings for each party, provided N is an odd integer and
D = Nd. This requires 2N concurrent composite observables.
The first N − 1 parties choose between N different local
settings and the last party between two, out of the set of N .
Consider N qudits prepared in a GHZ state

|ψ⟩ = 1√
D

D−1∑

n=0

N⊗

k=1

|n⟩k. (7)

Each party chooses a local observable from {X̂( l
N

)}N−1
l=0 given

in Eq. (3) with the phases f (n) = l
N

n. For simplicity, assume
that the N th party selects between two measurements X̂(0)
and X̂(1/N ) (later we discuss the other cases). Then, the
corresponding 2N concurrent composite observables are given
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by

Âr = X̂

(
r ⊖ 1

N

)
X̂

(
r ⊖ 2

N

)
· · ·

⊗ X̂

(
r ⊖ (N ⊖ 2)

N

)
X̂

(
tr

N

)
X̂(0) (8)

and

B̂r = X̂

(
r ⊖ 1

N

)
X̂

(
r ⊖ 2

N

)
· · ·

⊗ X̂

(
r ⊖ (N ⊖ 2)

N

)
X̂

(
tr ⊖ 1

N

)
X̂

(
1
N

)
(9)

for r = 1,2, . . . ,N with tr ≡ 2r ⊕ 1. Tensor product symbols
are omitted, except for the line break. Here, “⊕” (“⊖”) denotes
the addition (subtraction) under mod N , and tr ̸≡ tj for r ̸≡ j
mod N .

All composite observables {Âr}Nr=1 and {B̂r}Nr=1 satisfy their
corresponding invariance condition (2). Therefore, the state (7)
is their common eigenstate:

Âr |!⟩ = ω−γr |!⟩ and B̂r |!⟩ = ω−γ ′
r |!⟩, (10)

where γr = 1
N

(
∑N−2

k=1 r ⊖ k + tr ) and γ ′
r = 1

N
[
∑N−2

k=1 r ⊖ k +
(tr ⊖ 1) + 1]. Note that γr and γ ′

r are, in general, nonzero
integers less than N .

Following the method, with the products
∏N

r=1 ArBr we
obtain the LR condition ωN(x0

N −x
1/N
N )−1 = 1. Here, ωx0

N (ωx
1/N
N )

denotes the LR value of the N th party’s measurement X̂(0)
[X̂( 1

N
)]. However, ω = exp(2π i/D) and D = Nd (for an

integer d). Thus, the LR condition cannot hold: if Nξ − 1 ≡ 0
mod D holds, then ξ cannot be an integer. If the N th party
chooses two other measurements, say X̂(α) and X̂(α′), then
the LR condition leads to ωN(xα

N −xα′
N )−ηN = 1, where ηN =

N |αN − α′
N | with αN,α′

N ∈ {0,1/N,2/N, . . . ,(N − 1)/N}.
Again, ηN is a positive integer smaller than N . Like earlier,
in this case also the value of xα

N − xα′

N cannot be an integer, if
equation N (xα

N − xα′

N ) − ηN ≡ 0 mod D is to hold. Thus, we
have a GHZ contradiction.

The final question is whether the above GHZ contradictions
cannot be reduced to ones involving lower dimensions, or less
particles. In 2002, Cerf et al. [13] introduced the genuineness
criterion for a generalized GHZ theorem. A GHZ argument
is called genuine, if one cannot obtain another GHZ-type
contradiction from this argument by reducing the number of
parties or the dimension of any subsystem. Our N -partite GHZ
arguments are genuine. They are constructed using a set of
composite observables following cyclic permutations [see the
2N concurrent observables given in Eqs. (8) and (9)]. If we
eliminate one of the parties, we are unable to show a GHZ

contradiction with the remaining observables. The N -partite
GHZ state is no longer their common eigenstate.

The genuine D dimensionality of our argument is reflected
by the fact that the operators which we use are undecomposable
into a direct sum of subdimensional ones [14,16]. Assume
the contrary: for one of the parties one can simultaneously
block diagonalize all X̂(α) operators which are involved
in the argument. Thus, for each X̂(α) we have at least
one splitting into a direct sum X̂(α) = X̂(α)D−K ⊕ X̂(α)K ,
where D − K and K are the dimensions of the subspaces,
which via the direct sum reproduce the original full space.
Of course, to reduce the dimension of our argument one
has to have the same type of direct sum splitting of all
observables [for each α the operator X̂(α)D−K acts on the same
D − K dimensions, etc.]. In such circumstances for any two
noncommuting operators X̂(α) and X̂(α′), one can find pairs
of eigenvectors—|e⟩α for the first one and |e′⟩α′ for the second
one—such that α′ ⟨e′|e⟩α = 0. Simply |e⟩α , e.g., may be in
the (D − K)-dimensional subspace, while |e′⟩α′ may be in the
K-dimensional one. But this is not so for the operators involved
in our argument. The eigenvectors of the local observable X̂(α)
are |n⟩α = 1√

D

∑D−1
m=0 ω(n+α)m|m⟩. This implies that for every

n and m, one has |α⟨n|m⟩α′ |2 = sin2(πξ )
D2 sin2[(π/D)ξ ] > 0, where ξ =

m − n + α′ − α. Thus the simultaneous block diagonalization
is impossible. With the used observables the argument is
irreducibly D dimensional.

In summary, we have discussed the problem of generaliza-
tion of a GHZ theorem, and present here the results for an
odd number of parties, N . To construct our theorem we adopt
the concurrent observable approach [14,16]. The invariance
condition (2) guarantees a common eigenstate for a set of
observables, even if they are incompatible. For a prime N ,
we show an irreducible all-versus-nothing GHZ contradiction
for an N -partite D = (Nd)-dimensional system involving N
local measurement settings. The preliminary version of this
work can be found in [24].
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