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Transient properties of modified reservoir-induced transparency
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We investigate the transient response of a A-type system with one transition decaying to a modified radia-
tion reservoir with an inverse square-root singular density of modes at threshold, under conditions of trans-
parency. We calculate the time evolution of the linear susceptibility for the probe laser field and show that,
depending on the strength of the coupling to the modified vacuum and the background decay, the probe
transmission can exhibit behavior ranging from underdamped to overdamped oscillations. Transient gain
without population inversion is also possible depending on the system’s parameters.

PACS number(s): 42.50.Gy, 42.70.Qs

It has been now well documented that quantum coherence
and interference effects can modify the absorption and dis-
persion properties of an atomic system [1,2]. In the most
common situation, that of a A-type three-level system, the
medium becomes transparent to a probe laser field near an
otherwise absorbing resonant transition. This is achieved via
the application of a second laser field coupling to the linked
transition. In addition to steady state studies, considerable
work has been done on the transient properties of coherent
phenomena such as, for example, electromagnetically in-
duced transparency [3,4], gain (or lasing) without inversion
[5-7] and coherent population trapping [8,9].

As has been recently shown [10], transparency can occur
in the steady state absorption of a A-type system when one
of the atomic transitions is coupled to a modified radiation
reservoir having a threshold with an inverse square-root de-
pendence of the density of modes, p(w)=0(w—w,)/
(mVo—w,), with O being the Heaviside step function and
w, being the gap frequency. Such a density of modes can be
found near thresholds in waveguides [11,12], in microcavi-
ties [13,14], and near the edge of a photonic band gap mate-
rial which is described by an isotropic model [15-19]. We
also note that there is current interest in coherent phenomena
which occur in modified reservoirs having relatively weak
modal densities where the Born and Markov approximations
can be applied [20,21].

It is known that coherence effects can take a considerable
time to be set up [22], and the purpose of the present work is
to investigate this question when structured radiation reser-
voirs are employed. In this article we study the transient
behavior of the absorption of a A-type system, similar to the
one used in Ref. [10], where transparency in the steady state
absorption spectrum of the system was predicted. In our sys-
tem, one of the atomic transitions is spontaneously coupled
to a frequency-dependent reservoir which displays the above
mentioned inverse square-root behavior in its density of
modes. Solving the equation of motion for all times, we
show that the rate at which the atomic medium becomes
transparent to the probe field depends crucially on both the
background decay rate of the upper atomic level and the
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strength of the coupling to the modified vacuum modes. We
also find that, under certain conditions, the system can ex-
hibit transient gain without inversion.

The atomic system under consideration is shown in Fig. 1.
It consists of three atomic levels in a A-type configuration.
The atom is assumed to be initially in state [0). The transi-
tion |1)«|2) is taken to be near resonant with a frequency-
dependent reservoir, while the transition |0)«|1) is as-
sumed to be far away from the gap and is treated as a free
space transition. The dynamics of the system can be de-
scribed using a probability amplitude approach. The Hamil-
tonian of the system, in the interaction picture and the rotat-
ing wave approximation, is given by (we use units such that

hi=1)

H=[Qe?|0)(1|+ >, grae kT 1)(2]ay \ +He]
i

—i%|1><1|. (1)

Here, 0= — uy,- €E is the Rabi frequency, with u,,, being
the dipole matrix element of the |n)«|m) transition. The
unit polarization vector and the electric field amplitude of the
probe laser field are denoted by € and E, respectively. Also,
0=w—wq is the laser detuning from resonance with the
|0)«|1) transition, where w,,,=®,— ®,, and o, is the en-

FIG. 1. The system under consideration. The solid line denotes
the probe laser coupling, the thick dashed line denotes the coupling
to the modified radiation reservoir and finally the thin dashed line
denotes the background decay.
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ergy of state |n) and o is the probe laser field angular fre-
quency. In addition, y denotes the background decay to all
other states of the atom. It is assumed that these states are
situated far from the gap so that such background decay can
be treated as a Markovian process. We note that we are in-
terested in the perturbative behavior of the system to the
probe laser pulse, therefore y can also account for the radia-
tive decay of state [1) to state |0) Finally, gy,
=—iy2mwy/Ve,)- p, where V is the quantization vol-
ume, € ) is the unit polarization vector, ay , is the photon
annihilation operator, and wy is the angular frequency of the
{k,\} mode of the modified radiation reservoir vacuum field.

The wave function of the system, at a specific time ¢, can
be expanded in terms of the ‘‘bare’’ eigenvectors such that

(1)) =bo()|040}) +by(1)e~"*|1{0})

+§ bra(D]2k ), )

and by(t=0)=1, b (t=0)=0, by, (r=0)=0. We substi-
tute Egs. (1) and (2) into the time-dependent Schrodinger
equation and obtain the time evolution of the probability
amplitudes as

ibo(1)=Qb, (1), (3)

ib,(1)=Qby(1)— 5+% bl(t)—ifotdt’K(t—t’)bl(t’),
4)
ibi (1) =gy pe' k127 (1), 5)

with the kernel
K(t—t')= E gi )\e—i(wk—wlz—é)(z—z')
k,\ ’

%B3/2f dwp(w)e_i(“’_“’lz_&)(t_t,), (6)

and B being the atom-modified reservoir resonant coupling
constant. All the coupling constants (g, , 8, 1) are as-
sumed to be real, for simplicity.

The time evolution of the absorption and dispersion prop-
erties of the system are determined by, respectively, the
imaginary and real parts of the time-dependent linear suscep-
tibility x(7). In our case, the susceptibility can be expressed
as [3]

47"-/\/|ﬂ01|2

Q(Z,t) bO(t)bik(t)s (7)

x(t)=—

with A being the atomic density. The solution of Egs. (3)
and (4) is obtained by means of time-dependent perturbation
theory [5,10]. We assume that the laser-atom interaction is
very weak ({1<<,7y) so that by(t)~1 for all times. Then,
Eqgs. (3) and (4) reduce to
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ibl(t)wﬂ—(5+i%)bl(t)—ifldt’K(t—t’)bl(t’).
0
(®)

We further assume that ()(z,t) is approximately constant in
the medium and with the use of the Laplace transform we
obtain from Eq. (8)

Q

s[8+iy2+iK(s)+is]

by(s)= ©)

where b (s)=[Fe *'b\(t)dt, K(s)=[ge *'K(t)dt. The
amplitude b(¢) is given by the inverse Laplace transform

b :L - by (s)d 10
(1) 2w € 1(s)ds, (10)

where € is a real number chosen so that s = € lies to the right
of all the singularities (poles and branch cut points) of func-
tion b,(s).

For the case of an inverse square-root singularity in the
frequency-dependent reservoir density of modes K(s)
=B 1™ s+ i(6,—6) with §,=w,—~w,, the inverse
Laplace transform of Eq. (9) yields

5 5
bi(0=3 a(xity e’ =2 a1 -erf(Vxn]e'r,
(11)
where y;= \/;lz and x; are the roots of the equation
X+ eyxd+eox’+ e x+co=0. (12)
Here c3=92—i(6,+3"), c,=—iKy, ¢;=—08(5,

+iyl2), co=—K¢d', 8'=68,— 68, Koy=ip"?e ™ and erf is
the error function [23]. The roots of this equation are deter-
mined numerically. The expansion coefficients «; are given
by

iQxi

:(xi_xj)(xi_xk)(xi_xl)(xi_xm)

, (13)

«@;
with i,j,k,l,m=12345. Also, if Re(x;)>0 we have y;
=x;, while if Re(x;)<0 we have y,= —x;, in order to keep
the phase angle of x7 between — 7 and 7 [23]. In addition, if
x;=0 then «;=0. Therefore, at least two roots and at most
three roots contribute on the solution (11) depending on the
system parameters.

Within our perturbative approach, Eq. (7) yields x(#)~
—Dbi (1), where b (1) is given by Eq. (11). As has been
shown in Ref. [10], steady state transparency occurs for the
case that 6= 9, . This is the case that also interests us here.
In Fig. 2 we plot the time evolution of the imaginary part of
the linear, time-dependent susceptibility (—Im[x(7)]) for
different values of the background decay y and with 6= &,
=0. In the case that y> 3, the susceptibility is always posi-
tive (which denotes absorption in our convention), has a
maximum and the steady state value is reached adiabatically.
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FIG. 2. The time evolution of the imaginary part of the time-
dependent linear susceptibility (—Im[ x(¢)]) (in arbitrary units). In
our notation positive (negative) values denote probe absorption
(gain). The parameters used were 6= 8,=0 and y=5 (shot dashed
curve), y=1 (long dashed curve), y=0.5 (thin solid curve), and
v=0.2 (thick solid curve). Time and y are measured in units of 8.

If y= B, the system exhibits only absorption, however, small
oscillations are visible at the beginning. As y decreases, then
these oscillations become more pronounced, and small gain
(or lasing) without the presence of population inversion be-
tween |1) and |0), shown by negative values of the time-
dependent linear susceptibility, is found. If the background
decay decreases further and reaches the regime that y<<f the
oscillations increase further, the gain without inversion in-
creases, the interaction becomes more nonadiabatic and the
steady state value is reached for very large times.

The behavior displayed in the previous figure can be un-
derstood if the time evolution of the population of the ex-
cited state |1) is examined. As can be seen from Fig. 3, after
an initial weak absorption the population of the state |1) can
either decay smoothly to zero (for the case y> ) or evolve
by undergoing damped Rabi oscillations between states |1)
and |2) due to reversible decay which arises via the interac-
tion with the modified reservoir [15,16]. These oscillations
increase as the background decay decreases compared to the
coupling strength to the frequency-dependent radiation res-
ervoir. In such a way a time-dependent coherence between
states |1) and |2) is created which is responsible for the
phenomenon of transient gain without inversion shown in
Fig. 2.

This behavior of the system is related to the one predicted
[3] and experimentally observed [4] in a typical three level
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FIG. 3. The time evolution of the population of state |1). The
parameters and the units used are the same as in Fig. 2.

A-type atomic system which exhibits electromagnetically in-
duced transparency through the application of a coupling la-
ser field. The difference in our case, is that the transparency
and the transient gain without inversion occur due to the
coupling to a radiation reservoir with an inverse square-root
singularity of the density of modes at threshold and are not
induced by an external laser field.

In summary, we have discussed the transient properties of
the transparency in a A-type atom in which one transition
spontaneously decays to a specific frequency-dependent ra-
diation reservoir. The time evolution of the absorption and
thus the way that the steady state is reached depends cru-
cially on the background decay rate and the strength of the
coupling to the modified reservoir. Transient gain without
population inversion is found to exist if the coupling strength
to the modified reservoir is larger than the background decay
rate. We have only been concerned with the time evolution
of the linear absorption properties of the medium. The time
evolution of the dispersive properties of the system, which is
another topic of interest [ 10], will be discussed separately. In
such a study the simple relationship between the real part of
the susceptibility and the group velocity cannot be applied
(as it holds only for the steady state), and a different ap-
proach needs to be implemented.
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