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We provide a pedagogical account of an early proposal realizing fractional quantum Hall
effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs).
We start with a brief introduction on the basics of quantum Hall effects and then review
the early proposals in the simulation of spin-models and fractional quantum Hall (FQH)
physics with photons in coupled atom-cavity arrays. We calculate the energy gap and
the overlap between the ground state of the system and the corresponding Laughlin
wavefunction to analyze the FQH physics arising in the system and discuss possibilities
to reach the ground state using adiabatic methods used in Cavity QED.
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1. Introduction to Quantum Simulations with Coupled

Cavity Arrays

Quantum simulators offer a promising alternative when analytical and numerical
methods fail in analyzing models with strong correlations characterizing condensed
matter systems.1 The most famous example of this kind, with numerous applications
in describing effects such as quantum phase transitions, is the Hubbard model. The
latter has been simulated using ion traps,2 but found its optimal realization with
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cold atoms in optical lattices.3,4 More recently, motivated by great progress in the
field of Cavity quantum electro-dynamics (QED) and quantum nonlinear optics,
proposals to use strongly correlated photons as quantum simulators going beyond
linear optics5 have appeared.6,7 Initially, it was shown that one could generate
strongly correlated states of photons with an array of coupled cavities doped with
real or artificial atoms. The photons, although normally noninteracting, are made
to interact through the doped atoms and thereby emulate many body effects such
as Mott to Superfluid transition.8–10

The basic mechanism behind coupled cavities is evanescent coupling. The light
mode of interest is strongly confined in a cavity and the Wannier mode decays
exponentially outside the cavity. The overlap of the modes between two adjacent
cavities allows photons to hop between the cavities, while strong confinement sup-
presses direct hopping to non-nearest-neighbor cavities. The resulting dynamics is
described by the tight-binding model for photons, analogous to the model used in
condensed matter physics to describe electrons moving in a lattice of ions and to
the system of atoms moving in an optical lattice. Introducing atoms to the cav-
ities create interactions between photons, resulting in what is known as photon
blockade which was used to mimic the repulsive interactions necessary to emulate
strongly interacting models. The resulting Jaynes–Cummings–Hubbard Hamilto-
nian was shown to be analogous to the Bose–Hubbard model in many ways but
also to exhibit richer structure due to the hybrid light-matter nature of the excita-
tions in question. The ability to address individual sites and perform well-developed
quantum optical measurements provided a strong motivation to study and develop
coupled QED cavity arrays (CQCAs) as an emulator of condensed matter systems.

In the early photonic quantum phase transition works mentioned above, the XY
spin model emerged naturally because, in the Mott regime, two photons cannot
occupy the same cavity mode and the Hilbert space dimension of a single site is
thus reduced to two, mimicking the spin-1/2 system.10 Photonic analogues of more
complex spin systems in coupled QED cavities soon followed where the introduction
of more than one atoms per cavity was shown to generalize the setup to high-spin
Heisenberg models.11 Exotic models such as the Kitaev hexagonal lattice can also
be implemented exploiting polarized photons.12 Recently, one of us has shown with
collaborators that an effective gauge field for photons can be introduced in coupled
QED cavities by introducing site-dependent lasers.13 For a two-dimensional (2D)
CQCA, this means that an effective magnetic field for photons is induced. We
would like to mention here a number of more recent proposals and experiments
employing photons for topological effects in a number of different platforms ranging
from driven optical setups14,15 to micro-wave Circuit QED, photonics and meta-
materials.16–20

In this paper, we review some of the basics of the early CQCA array proposals
and focus on the effective gauge fields implementations and the Fractional Hall
effect work. Pedagogical introduction to integer and fractional quantum hall effects
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(FQHEs) are given first with a brief remark on topological effects arising in these
systems. Explanations on how to realize a spin model in coupled QED cavities and
their relevance to (FQH) systems is provided next, followed by calculations showing
some relevant quantities that exhibit the FQHE arising in the engineered CQCA.

2. Quantum Hall Effect Basics Revisited

Quantum Hall effect is a phenomenon occurring in a 2D electron gas under a strong
magnetic field in the transverse direction.21 When a current is induced in such a sys-
tem the Hall current develops in the perpendicular direction as in the classical Hall
configuration. In the quantum case, however, the Hall resistance exhibits plateaus
at precisely defined values, i.e., the resistance does not change as one varies the
magnetic field, for example. When the plateau occurs at an integer multiple of h/e2

the effect is called the integer quantum Hall effect and can be understood in terms
of single particle eigenstates called Landau levels. Somewhat surprisingly, however,
the robustness of the quantization of the Hall resistance cannot be explained with-
out the impurities providing the mobility gap. Such robustness has been explained
in terms of the topological nature of the geometric phase induced by the gauge
field.22

The plateaus also occur at rational fractions of h/e2, in which case the effect
is called the FQHE.23 The FQHE results from strong interactions between the
electrons and can be understood in terms of fractional charges that have fractional
statistics. These quasiparticle excitations are called anyons and form the basis of
topological quantum computation.

2.1. Integer quantum Hall effect

The phenomena of quantized hall resistance can be readily understood in terms of
Landau levels as alluded to earlier. Here, we give a brief summary and refer the
reader to excellent lecture notes by Girvin24 for a more detailed account.

The Hamiltonian for 2D noninteracting gas of electrons under perpendicular
magnetic field is given by

H =
1

2m
(p+ eA)2 , (1)

where −e is the charge of the electron. It is convenient to choose the Landau gauge,
Ax = −By and Ay = 0, in which case the Hamiltonian is independent of x and
the solutions can be written as ψk(x, y) = eikxfk(y). The effective one-dimensional
(1D) Hamiltonian acting on this function is

Hk =
1

2m
p2y +

1

2
mω2

c(y − kl2B)
2 , (2)

where ωc = eB/m is the cyclotron frequency and lB =
√

!/eB is called the
magnetic length. The electrons therefore occupy discrete harmonic oscillator levels
named Landau levels. In the presence of a large magnetic field, each Landau level
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has a huge degeneracy due to the freedom in choosing the y momentum k. It turns
out that there is one state per Landau level per flux quantum, Φ0 = h/e, i.e., the
total number of states in each Landau level is Nφ = eBA/h, where A is the area of
the sample.

Naively, therefore, the quantized plateaus can be explained as follows. With the
changing magnetic field strength, the degeneracy of the Landau levels change, and
when the Fermi energy lies between the Landau levels the number of participating
electrons in the Hall current is fixed, resulting in a quantized value of Hall resistance
while the magnetic field is swept within the gap. The quantized Hall resistance
then depends on the filling factor ν ≡ N/Nφ = n, where n is an integer, according
to the argument just provided. This argument suffers a slight problem, however,
in that it is not possible for the Fermi energy to lie between the Landau levels
while sweeping the magnetic field strength. What gives the experimental stability
of the quantized hall conductance is, somewhat counter-intuitively, disorder. In the
presence of disorder, the Landau levels broaden and form bands of extended and
localized states. When the Fermi energy varies within a band of localized states
called the mobility gap, the transport property is unaffected and a plateau of finite
width can be observed. Disorder plays a very important role in giving the robustness
to the quantum Hall effect.

2.2. Fractional quantum Hall effect

The FQHE generally occurs within the lowest Landau level, the earliest example
found being ν = 1/3. Naively, one would expect the Hall plateaus to be absent in
this case, because there are still unfilled states with the same energy. What happens,
of course, is that the degeneracy is broken by the coulomb interaction between the
electrons. Electrons are highly correlated due to the interaction and the ground state
becomes nontrivial, whose form is hard to obtain from a perturbative analysis due
to the large degeneracy. It was not long, however, before an inspirational guesswork
by Laughlin solved the problem.25 The strongly correlated electronic state in the
FQHE was found to be excellently described by Laughlin’s variational wavefunction,
which in the symmetric gauge (Ax = −By/2 and Ay = Bx/2) reads

Ψq(zj, z
∗
j ) =

∏

k<l

(zk − zl)
qe−

∑
j zj

2/4 , (3)

where q = 1/ν and zj = xj + iyj is a complex variable representing the position of
the jth electron in units of the magnetic length lB. Quasi-excitations in such systems
are separated from the ground state by an energy gap and can be created by intro-
ducing a flux quantum through a thin solenoid. Interestingly, such quasi-excitations
carry with them a fractional charge. This has lead to development of many use-
ful pictures explaining various aspects of FQHE such as composite fermions and
hierarchy picture.26,27
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2.3. Topological effects in quantum Hall systems

The robustness of quantized Hall resistance has topological origin as first explained
by Laughlin,22 where the author showed that the gauge invariance is at the root of
the robustness. Soon after, the influential work by Thouless, Kohmoto, Nightingale
and den Nijs (often known as TKNN) showed that the Hall conductance calculated
from the Kubo formula must be quantized due to single-valuedness of the wave-
function.28 They have considered the Hall system in a lattice and concluded that
the Hall conductance in such a system is proportional to an integral of a certain
quantity over the first (magnetic) Brillouin Zone, summed over the filled bands and
that this integral must be an integer multiple of some factor. Simon showed that
this integer is related to the so-called (first) Chern number, related to the Berry
phase.29

The topological argument above applies to both the integer and FQHEs and
therefore does not exhibit the principal differences between them. The main dif-
ference between them is that the FQHE arises from interacting particles. A stark
manifestation of the collective many body nature is the anyon, a particle with nei-
ther Bosonic nor Fermionic but “any” statistics,30,31 that arises as the quasiparticle
in FQH systems.32 In some FQH systems, notably for ν = 5/2, the quasiparticle
excitations are non-Abelian anyons which has potential use in topological quantum
computation.33

3. From Spin Models to Fractional Quantum Hall Effect with

Photons in Coupled QED Cavities

For photons (or bosons), there is no direct analogue of quantized plateaus because
photons do not fill up the states up to the Fermi energy, i.e., there is no Pauli
principle for photons.34 The Laughlin state is still a good (sometimes exact) vari-
ational ground state for bosons, however, with an even-denominator filling factor.
ν = 1/2 is the analogue of the usual ν = 1/3 FQH state.35 This is because the
Laughlin state is the unique state that minimizes the repulsive short-range poten-
tial within the lowest Landau level. It can be justified in the usual sense of justifying
the Laughlin state, except that the inverse of the filling factor has to be an integer
to account for the bosonic nature of the particles. The kinetic plus the magnetic
part of the Hamiltonian is automatically minimized by using the degenerate wave-
functions within the lowest Landau level, while the short-range bosonic interaction
term is minimized (set to zero in fact), because the Laughlin state is zero whenever
two particles coincide.

We discuss the first proposal to realize FQH state in a CQCA13 in detail here.
We will first explain how to generate a spin Hamiltonian where the effective spin
states are represented by hyperfine atomic levels in each of the resonators. The
proposal realizes the Laughlin state by employing an effective 2D spin model where
the spin exchange is mediated by intercavity hopping of virtually excited cavity
photons.
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Fig. 1. 1D CQCA doped with single atoms for realization of Heisenberg type spin Hamiltonians.

3.1. Spin models in coupled QED cavities

Assume cavities arranged in the form of a lattice (typically, we consider a regular
lattice such as a 1D chain or 2D plane). Each cavity is doped with a single three-
level system (which we refer to as an atom) and two ground levels are used to
represent an s = 1/2 spin (in a rotated basis, as will be seen later). We start by
recalling that in terms of two states |↓⟩ and |↑⟩ of one atom, the spin-1/2 system
can be described in terms of operators sZ = 1/2(|↑⟩⟨↑ |− |↓⟩⟨↓ |), s+ = |↑⟩⟨↓ | and
s− = |↓⟩⟨↑ |.

For simplicity, let us consider a 1D CQCA depicted in Fig. 1. |0⟩ and |1⟩ are
assumed to be stable, whereas the excited level |e⟩ is not. Let us denote by |ψj⟩
the state |ψ⟩ of the atom in the jth cavity. In the rotating frame, the Hamiltonian
describing the system reads

H =
∑

j

[ei∆1tΩ0eσ
e0
j + ei∆0tΩ1eσ

e1
j + h.c.]

+
∑

j

[(ei∆0tg0eσ
e0
j + ei∆1tg1eσ

e1
j )aj + h.c.]

+
∑

j

[

Ω01

2
(σ01

j + σ10
j ) + J(a†jaj+1 + aja

†
j+1)

]

, (4)

where σxy
j = (|x⟩⟨y|)j (x, y = 1, 0, e); aj is the annihilation operator for the jth

cavity mode; Ωxy is the Rabi frequency of the classical field driving the transition
|x⟩ ↔ |y⟩, gxy is the corresponding atom-cavity coupling rate and J is the inter-
cavity hopping rate of photons. Note that both the transitions are coupled to the
same cavity mode and the Raman transitions are completed by appropriate classical
fields. The transition between |0⟩ and |1⟩ can be induced, for example, by a two-
photon process.

Working in a rotated spin basis such that | ↑⟩ = (1/
√
2)(|0⟩ + |1⟩) and | ↓⟩ =

(1/
√
2)(|0⟩ − |1⟩), it can be shown that the above Hamiltonian transforms to11:

H =
N
∑

j=1

[K3(Sj)
2 +K4(S

Z
j )

2 +BSZ
j ]

+
N
∑

j=1

[K1(S
X
j SX

j+1 + SY
j SY

j+1) +K2S
Z
j S

Z
j+1] , (5)

1441003-6

In
t. 

J. 
M

od
. P

hy
s. 

B 
20

14
.2

8.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 N

A
TI

O
N

A
L 

U
N

IV
ER

SI
TY

 O
F 

SI
N

G
A

PO
RE

 o
n 

11
/0

5/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 9, 2013 9:39 WSPC/Guidelines-IJMPB S0217979214410033

Simulating Topological Effects with Photons in CQCAs

Fig. 2. (a) 2D CQCA realizing the FQHE. Each site labeled by two position indices (p, q)
comprises of two orthogonal cavity modes and a three-level atom. The cavity modes mediate the
hopping between adjacent sites. (b) Atomic level scheme. The cavity mode x (y) is detuned by ∆x

(∆y) and is coupled to the atomic transition |e⟩⟨0| with coupling strengths gx(p,q) (g
y
(p,q)

). The tran-

sition |e⟩⟨1| is driven by the laser fields with Rabi frequencies Ωx
(p,q)e

−iθx(p,q) and Ωx
(p,q)e

−iθx(p,q) .

The subscripts denote the position of the site.

where Kj and B are analytic functions of J , Ω01, g20e/∆0e and µi,j = µi ± µj with
µj = gjeΩ∗

je/∆je. Note that two more laser fields have to be brought in (not shown
in the figure) to achieve full control of the individual parameters. In this case all
terms can be determined freely, making the model general enough to cover any
anisotropic or isotropic Heisenberg spin chains.11

If K2 = K3 = K4 = B = 0, the Hamiltonian becomes of the type
∑

j(σ
+
j+1σ

−
j + h.c.). This can be thought of as strongly interacting bosons hop-

ping between the sites such that no two bosons can occupy the same site. We want
to discuss FQHE arising in such a system, for which another spatial dimension and
a synthetic magnetic field has to be introduced.

3.2. Fractional quantum Hall states of photons

To realize the FQH states of photons, the above spin system has to be generalized
to 2D coupled QED cavities. The system is depicted in Fig. 2. Here, the atomic
scheme is a little simpler than the previous one, except for the fact that there
are now two cavity modes interacting with an atom. The atoms now interact with
two independent cavity modes in the x and y directions and the cavity modes are
coupled only to the atomic transition between the ground state |0⟩ and the excited
state |e⟩ with the coupling strength gµ ≡ gµ0e. They are detuned by ∆µ, where µ
denotes the x or y mode. The classical control fields of Rabi frequencies Ωµe−iθµ

complete the Raman transitions between the ground states |0⟩ and |1⟩ with zero
two-photon detuning. The total Hamiltonian reads

H =
∑

µ=x,y

∑

j=(p,q)

gµe−i∆µtaµj (|e⟩⟨0|)j + Ωµe−iθµ
j e−i∆µt(|e⟩⟨1|)j + h.c.

−
∑

p,q

(Jxax†p+1,qa
x
p,q + Jyay†p,q+1a

y
p,q) + h.c. , (6)
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where Jx and Jy are the intercavity hopping rate in the x and y directions and (p, q)
denotes the site on the qth row and the pth column. We assume ∆µ ≫ gµ ≫ Ωµ, Jµ

to suppress the cavity photon and to ensure that the interaction is very strong.
We also assume ∆x − ∆y ≫ gx, gy to prevent cross-coupling between the two
cavity modes. Adiabatic elimination of the excited state then yields the effective
Hamiltonian

H =
∑

µ=x,y

∑

j=(p,q)

δµaµ†j aµj (|0⟩⟨0|)j + ωµ(e
iθµ

j aµj σ
+
j + h.c.)

−
∑

p,q

(Jxax†p+1,qa
x
p,q + Jyay†p,q+1a

y
p,q) + h.c , (7)

where δµ = (gµ)2/∆µ, ωµ = gµΩµ/∆µ and σ+ = |1⟩⟨0|. In order to reach the
desired spin model, we further assume δµ ≫ Jµ ≫ ωµ, which can be satisfied if
gµ∆µ ≫ Jµ/gµ ≫ Ωµ/∆µ holds. This condition suppresses the cavity photons
further and the effective Hamiltonian becomes

H = −t
∑

p,q

σ+
p+1,qσ

−
p,qe

i(θx
p+1,q−θx

p,q) + σ+
p,q+1σ

−
p,qe

i(θy
p,q+1−θy

p,q) + h.c , (8)

where we have assumed the parameters are such that t = Jx(ωx/δx)2 = Jy(ωy/δy)2.
The above Hamiltonian can be obtained from the Magnus expansion by projecting
on the subspace with no cavity photons.

Note that this Hamiltonian is equivalent to

H = −t
∑

p,q

b†p+1,qbp,qe
−iπαq + b†p,q+1bp,qe

iπαp + h.c

+U
∑

p,q

b†p,qb
†
p,qbp,qbp,q , (9)

in the limit U ≫ t, if we take θxp,q = −pqπα and θyp,q = pqπα. α = Ba2/Φ0, where a
is the lattice spacing and α is the number of magnetic flux quanta through a lattice
cell. The above Hamiltonian describes a system of bosonic particles moving in a
2D square lattice of spacing a in the presence of a magnetic field Bẑ. It is obtained
from

H0 = −t
∑

⟨j,k⟩

b†jbke
−i 2π

Φ0

∫
k
j

A(r) · dl , (10)

describing free bosons in a single Bloch band in the symmetric gauge. Because of
the similarity in the Hamiltonian, the Laughlin state in Eq. (3) is expected to be
a good ground state wavefunction for the photonic system in the thermodynamics
limit, if α≪ 1 and m = 2, 4, 6, . . . .

In the finite-sized calculations, however, it is more advantageous to eliminate
the edge effects by taking the periodic boundary condition. The solution for the
periodic boundary condition in the Landau gauge (A = (−By, 0)) has already been
found.36,37 It can be written as

Ψ(z1, z2, . . . , zN ) ∝ frel(z1, z2, . . . , zN )FCM(Z)e
∑

i y
2
i /2lB , (11)
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where N denotes the total number of bosons. For a rectangular system of size
L1 × L2, the relative wavefunction

frel =
∏

i<j

[θ1((zi − zj)/L1)|τ ]q , (12)

with τ = iL2/L1 and the center of mass wavefunction

FCM(Z) = θ

[

l/q + (Nφ − 1)/2q

−(Nφ − 1)/2

]

(qZ/L1|qτ) , (13)

with l = 0, 1 labeling the degeneracy due to the ambiguity in choosing the center
of mass.36,38 Nφ is the total number of magnetic flux through the entire lattice.

θ

[

a

b

]

(z|τ) =
∑

n

exp[iπτ(n+ a)2 + 2πi(n+ a)(n+ b)] , (14)

is the elliptic theta function and θ1 is defined as the elliptic theta function with
a = b = 1/2.

Taking the set of parameters ∆µ/1000 = gµ/100 = Ωµ = Jµ, corresponding to
δµ = 100ωµ = Jµ, and taking the 4 by 4 lattice with α = 1/4 and two bosons such
that the filling factor ν = 1/2, the numerically found ground state has the fidelity of
0.976 with the periodic Laughlin state (11). The fidelity of the ground state of the
ideal Hamiltonian (9) is Fideal = 0.989 and the fidelity obtained from the photonic
system approaches this value as δµ/Jµ and Jµ/ωµ increase. Fideal approaches 1
as α → 0, i.e., in the continuum limit.39,40 Note that the Landau gauge requires
θyp,q = 0 and θxp,q = −pq2πα.

For the filling factor of 1/2, there are two degenerate ground states in the peri-
odic boundary condition. In the lattice version considered in this paper, this degen-
eracy may or may not be exact depending on the dimension of the lattice. The two
lowest ground states, however, are often quite close to each other and are separated
from the lowest excited state by a gap larger than the difference between them. In
this case, the two ground states ψ1 and ψ2 are well-approximated by the periodic
Laughlin function as described above. Table 1 gives the values of the energy gap

Table 1. Energy gap and the overlap for different values of α.

α ∆E Overlap α ∆E Overlap

ψ1 0.333 0.211 0.983 ψ1 0.143 0.180 0.997
ψ2 0.333 0.197 0.983 ψ2 0.143 0.180 0.997

ψ1 0.25 0.276 0.989 ψ1 0.125 0.142 0.995
ψ2 0.25 0.276 0.989 ψ2 0.125 0.142 0.995

ψ1 0.2 0.270 0.989 ψ1 0.111 0.112 0.999
ψ2 0.2 0.269 0.990 ψ2 0.111 0.112 0.999

ψ1 0.167 0.234 0.993 ψ1 0.1 0.088 0.999
ψ2 0.167 0.216 0.995 ψ2 0.1 0.088 0.999
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Fig. 3. (Color online) Energy gap (red squares) and the overlap (blue discs) as α is varied.

∆E to the third lowest energy state and the overlap with the appropriate periodic
Laughlin function, as a function of α, the magnetic flux through a unit cell. They
are also shown in Fig. 3.

3.2.1. Adiabatic preparation of the ground state

Experimentally, it is difficult to impose the periodic boundary condition and one
would revert to the normal hard wall boundary condition. In this case, the overlap
with the periodic Laughlin function cannot be directly measured, but other pre-
dictions of the FQH system should be checked, e.g., incompressibility, correlations
between particles, or quasihole excitation spectrum. For this purpose, one should
prepare the ground state of the system first, to which we turn our attention here.
The ground state (note that the ground state for hard wall boundary condition is
unique) can be prepared adiabatically as follows. (i) Prepare all atoms in the ground
state |0⟩ by optical pumping or other method with the laser fields turned off. (ii) Se-
lect two sites j0 and j1 and prepare the atoms in the state |1⟩. (iii) Lower the energy
of the state |1⟩ by ϵ at those sites, by creating ac Stark shifts. For example, this can
be done easily by shining two lasers on the sites j0 and j1. (iv) Gradually increase
the Rabi frequencies Ωx and Ωy to obtain the desired value of t. (v) Adiabatically
decrease the energy shift ϵ to 0. The initial two quanta state was the ground state
with finite ϵ and therefore with sufficiently slow turning off of ϵ, the state should
have stayed in the ground state of the total Hamiltonian, which for ϵ = 0 is sought
after generalized Laughlin state.

For a large enough system, the edge effects should be negligible and the pre-
pared ground state should exhibit characteristic behaviors of FQH states such as
incompressibility. Furthermore, one can control the local phases to induce quasi-
particles and detect their presence through correlation measurements, for example,
we plan to investigate such effects in a future work.
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Simulating Topological Effects with Photons in CQCAs

4. Conclusion

We have given a brief pedagogical introduction to integer and FQHEs and discussed
in more detail how such a system can be realized in a CQCA system composed of
strongly interacting bosons (photons). The energy gap and the overlap with the
periodic Laughlin state were calculated for various values of α, the flux through
a unit cell, showing that the ground state in such a system indeed shows FQHE.
Lastly, a brief description of possible experimental preparation of the ground state
was given.
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