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Repulsively induced photon superbunching in driven resonator arrays
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We analyze the nonequilibrium behavior of driven nonlinear photonic resonator arrays under the selective
excitation of specific photonic many-body modes. Targeting the unit-filled ground state, we find a counterintuitive
“superbunching” in the emitted photon statistics in spite of relatively strong on-site repulsive interaction. We
consider resonator arrays with Kerr nonlinearities described by the Bose-Hubbard model, but also show that an
analogous effect is observable in near-future experiments coupling resonators to two-level systems as described
by the Jaynes-Cummings-Hubbard Hamiltonian. For the experimentally accessible case of a pair of coupled
resonators forming a photonic molecule, we provide an analytical explanation for the nature of the effect.
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I. INTRODUCTION

Coupled resonator arrays (CRAs) offer the intriguing pos-
sibility of realizing strongly correlated many-body quantum
states of light. Early work on CRAs assumed idealized,
lossless arrays and focused in particular on equilibrium
quantum phase transitions in these structures. However, near-
future photonic devices will necessarily operate under driven-
dissipative conditions on account of unavoidable photon loss,
thereby serving as natural platforms for the exploration of
novel nonequilibrium many-body photonic effects [1–9]. Our
understanding of these systems is in its infancy, making it
desirable to concretely connect the nonequilibrium properties
of CRAs with their more familiar equilibrium structure. To this
end, there have been recent efforts to identify signatures of the
equilibrium quantum phase transition as originally proposed
in Refs. [10–18] which survive under lossy dynamics.

We propose an alternative scheme to chart different regions
of parameter space and connect nonequilibrium observables
to the underlying Hamiltonian properties. We envisage a
resonator array driven to a nonequilibrium steady state (NESS)
by external lasers, with the laser frequency chosen such that
the unit-filled equilibrium ground state is selectively addressed
and populated. By “unit-filled ground state” we mean the
lowest-lying eigenstate of the undriven CRA in the subspace
spanned by states with as many photons as there are resonators.
Features arising from the details of the nonequilibrium
operation appear in collected emission statistics, including
a counterintuitive many-body repulsion-induced bunching of
the emitted photons, the magnitude of which is controllable
via tuning Hamiltonian parameters. Novel superbunched light
sources far exceeding the bunching of thermal photons may
find important applications in ghost imaging technologies
[19] and all-optical simulation of two-photon correlations in
quantum walks [20].

In this work we first focus on a minimal-sized two-site
resonator system. Such dimers or photonic molecules are
expected to be experimentally viable in the near future in
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different technologies ranging from semiconductors to circuit
QED. We initially study the system for resonator nonlinearities
of the repulsive Kerr-type, as shown in Fig. 1(a), to illustrate
our driving scheme. We then analyze the Jaynes-Cummings
type encountered when resonator modes interact with em-
bedded effective two-level systems [21], as in Fig. 1(b). We
note here that we have previously investigated the validity
of modeling the Jaynes-Cummings-Hubbard (JCH) with the
simpler, single species Bose-Hubbard (BH) model [22] and
accordingly also demonstrate that the superbunching signature
persists under a JCH description. Moving beyond this minimal
“array,” bunched emission is also demonstrated in near-future
experimentally accessible mesoscopic-sized systems [23,24].

II. SYSTEM

We consider a one-dimensional chain of M coupled single-
mode optical resonators under periodic boundary conditions.
Each resonator of frequency ωc is coherently coupled to its
two nearest neighbors. External lasers coherently drive each
resonator in phase with amplitude ". In a frame rotating at the
laser frequency ωL, the system Hamiltonian is

Ĥ(M) =
M∑

j=1

[#câ
†
j âj + Uâ

†
j â

†
j âj âj + "(â†

j + âj )]

−J
∑

⟨j,j ′⟩
(â†

j â
′
j ). (1)

Here U is the Kerr nonlinear strength, J is the photon hopping
rate, " is the photon driving strength, and ⟨j,j ′⟩ denotes
nearest-neighbor resonators. We take all Hamiltonian coupling
rates to be much smaller than the bare resonator frequency:
U,J," ≪ ωc. The operators âj are the photon destruction
operators for the photon mode in resonator j . The detuning of
the driving laser frequency from the bare cavity frequency is
#c = ωc − ωL.

Markovian photon loss processes from each cavity are
incorporated via a quantum master equation formalism for
the evolution of the system density matrix ρ, ρ̇ = L(M)[ρ],
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FIG. 1. (Color online) (a) Schematic of driven-dissipative Bose
Hubbard model, featuring local coherent driving, photon tunneling,
and a purely photonic Kerr nonlinearity. (b) The driven-dissipative
Jaynes-Cummings model with effective photon nonlinearity gener-
ated by couplings to two-level systems. (c) Diagram showing bare
basis (solid black) and eigenfrequencies (dash dotted red) of the
driven system for the minimal system of M = 2 resonators. The laser
is tuned so that two laser photons (vertical red arrows) are capable of
promoting the system to the lowest-lying two-photon state.

where

L(M)[ρ] = 1
i

[Ĥ(M),ρ] + γp

M∑

j=1

D̂âj
[ρ]. (2)

The dissipative part of the dynamics is described by D̂âj
[ρ] =

âjρâ
†
j − 1

2 (â†
j âjρ + ρâ

†
j âj ). The NESS of the system is

described by the density matrix ρss which satisfies L[ρss] = 0.
Intraresonator observables are measured with respect to this
state, ⟨Ô⟩ss ≡ Tr(Ôρss), and may be experimentally inferred
from measurements on the emitted photons using existing
techniques.

III. TWO-RESONATOR “DIMER”

We begin by analyzing the simplest possible driven res-
onator array consisting of just M = 2 resonators, which serves
to illustrate clearly our scheme for accessing the unit-filled
ground state. Figure 1(b) shows the low-lying eigenstructure
of the undriven Hamiltonian of Eq. (1) for M = 2, and our
driving scheme. The two one-photon eigenfrequencies are the
symmetric (+) and antisymmetric (−) Bloch modes and lie
(in the bare frame, with " = 0) at ω

(1)
± = ωc ∓ J , with corre-

sponding eigenstates |1±⟩. The two-photon eigenfrequencies
are ω

(2)
0 = 2ωc + 2U , ω

(2)
± = 2ωc + U ∓

√
U 2 + 4J 2, with

eigenstates |20⟩, |2±⟩, respectively. The unit-filled ground
state is of frequency ω

(2)
+ . This mode undergoes a qualitative

change between the extreme limits of a localized state,
characterized by vanishing on-site photon number fluctuation
Var(â†

j âj ) → 0 for U ≫ J , to a coherent superposition state

with Var(â†
j âj ) → 1

2 for U ≪ J . For increasing system size,
the behavioural transition of the ground state becomes sharper,
approaching the celebrated Bose-Hubbard Mott-insulating-to-
superfluid phase transition in the infinite-system limit [25].

To selectively populate the unit-filled ground state of Eq. (1)
for a particular set of Hamiltonian parameters, we set the
driving laser frequency such that two laser photons are resonant
with the lowest-lying two-photon mode, i.e., 2ωL = ω

(2)
+ ,

FIG. 2. (Color online) (a) Emitted photon statistics as a function
of J and U for a dimer (M = 2) of resonators driven according to
Eq. (3). Driving strength "/γp = 0.3. Black curve: analytic result
for g(2) = 1. Black dot: the point (Jc/γp,Uc/γp) where bunching sets
in. (b) “Slices” along the dotted lines in panel (a) above and below
the critical hopping amplitude at which the bunching feature appears,
for decreasing driving strengths, down to the infinitesimal limit (solid
black lines).

implying a laser detuning

#c(J,U ) = 1
2 (

√
U 2 + 4J 2 − U ). (3)

We note that #c can assume values in the range [0,J ],
and so a laser with bandwidth J centered on the resonator
frequency will allow an exploration of all nonlinearities U .
Fixing #c = #c(J,U ) for a given hopping and nonlinearity,
we now examine which features of the underlying Hamil-
tonian mode structure leave fingerprints on experimentally
accesible photonic observables. In our nonequilibrium setting
the photon number is not an integer and the photon number
variance is not an informative order parameter. To compensate
for these nonequilibrium effects, we instead focus on the
local zero-time photon correlation function g(2) ≡ g

(2)
j =

⟨â†
j â

†
j âj âj ⟩ss/⟨â†

j âj ⟩2
ss, a statistical quantity directly accessible

in CRA setups through standard methods like homodyne
detection. We note that g(2) measurements may be particularly
valuable in weakly driven systems, where the excitation
number may be very small, but normalized statistical quantities
may be collected over longer times.

Figure 2(a) shows g(2) measured in the NESS of a BH
dimer pumped at the laser detuning of Eq. (3) for a range of
tunneling rates and nonlinearities (J,U ). Results are obtained
via exact diagonalization of the matrix representation of
the superoperator L(M), with the steady-state density matrix
ρss reconstructed from the zero-eigenvalue eigenvector after
enforcing the unit-trace condition. The diagram is broadly
divided into three regions, defined by Poissonian (g(2) ≈
1), antibunched (g(2) < 1), and bunched (g(2) > 1) statistics.
Notably, there is a critical coupling rate Jcrit between the
resonators below which bunching does not occur for any value
of nonlinearity, suggesting that the bunching arises from a
cooperative many-body effect in the NESS. Figure 2(b) shows
the qualitative difference in the behavior of the correlation
function above and below this critical point. For comparison,
an isolated resonator driven at its single-particle (unit-filled)
resonance never exhibits bunched signatures [see dash-dotted
line in lower panel of Fig. 2(b)].

At low nonlinearities U ≪ γp, the dimer is driven at the
frequency of the zero-momentum Bloch mode, and its response
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is approximately linear. The NESS is a coherent state, inherit-
ing Poissonian statistics with g(2) = 1, and average population
⟨â†

j âj ⟩ = (2"/γp)2, for all J . At the other extreme, taking the
hardcore limit U ≫ γp (while also remaining in the regime
U ≪ ωc), no more than a single photon per resonator can be
injected, and the problem is reduced to two coupled two-level
systems whose emission is completely antibunched (g(2) = 0),
with mean excitation number per resonator limU→∞⟨â†â⟩ =
x(2x + 1)/[(2x + 1)2 + xy], where x ≡ (2"/γp)2 and y ≡
(J/")2.

Away from these extreme limits, in the region of parameter
space where J and U are comparable, the emitted light is
bunched for hopping rates larger than a critical rate J > Jc.
This is counterintuitive, as we are probing a two-photon
state with significant repulsion favoring separation, and yet
we find an enhanced probability of photons being emitted
together, relative to the statistics of the driving. This physics is
reminiscent of many-boson bound states and localized breather
modes in the Bose-Hubbard model [26–30]; however, we show
below that our bunching is qualitatively different.

We derive features of this bunched region by consid-
ering the limit of infinitesimal driving. Figure 2(b) shows
that the correlation function approaches a limiting behavior
as "/γp → 0, an observation confirmed by perturbatively
expanding the elements of the NESS density matrix ρss in
increasing powers of the driving strength, then solving for
g(2) [8]. Details are presented in the appendix. The equations
thus obtained are physically opaque; however, further progress
can be made by making a pure-state ansatz ρss = |&ss⟩⟨&ss|,
valid in the low-driving regime [7]. The state |&ss⟩ is found
as the stationary state (corresponding to the zero eigenvalue)
of the effective Hamiltonian Ĥ(M)

eff obtained by replacing
#c → #c − iγp/2 in Eq. (1), which may be interpreted as
the Hamiltonian governing a single quantum trajectory, with
a vanishing probability of a quantum jump ensured by taking
the limit "/γp → 0.

Considering only the lowest excitations and exploiting the
symmetry of the two-site system, we set |&ss⟩ = C00|00⟩ +
C1(|01⟩ + |10⟩) + C11|11⟩ + C2(|02⟩ + |20⟩), from which the
correlation function follows as g(2) = |C2|2/|C1|4. We obtain
the minimum resonator coupling for which bunched statistics
appear as J̃c = Jc/γp = [(3 + 2

√
2)/4]1/2, and the nonlinear-

ity at this point Ũc = Uc/γp =
√

J̃c as marked in Fig. 2(a).
The full calculation and expressions for the coefficients C are
presented in the appendix. The transition from super- to sub-
Poissonian statistics (i.e., where g(2) = 1) is found to occur at
J̃ ≈ (Ũ/2)1/2 for J ≫ Jc, while for very large but finite U/J ,
the exact solution may be simplified to g(2) ≈ ( J̃

Ũ
)2(1 + 4J̃ 2).

Figure 3 offers physical insight into this phenomenon,
showing the emission spectrum of the system as calculated
from the Fourier transform S(ω − ωL) of the on-site steady-
state autocorrelation function S(τ ) = ⟨â†(t + τ )â(t)⟩, as a
function of increasing nonlinearity. The resonator coupling
is sufficiently large (J/γp = 10 > J̃c) to observe bunched
emission [top panel of Fig. 3(a)]. At all nonlinearities,
the spectrum is dominated by two bright features. These
correspond to decays from the lower and upper one-particle
states |1∓⟩ to the vacuum |0⟩, labeled lines A and B,
respectively.

FIG. 3. (Color online) (a) Lower: Emission spectral function
relative to the laser frequency |S(ω − ωL)|2 with increasing non-
linearity U at a fixed hopping J/γp = 10. At our weak driving
("/γp = 0.3), the spectrum is dominated by transitions between the
vacuum and one-particle manifold (bright lines A and B). Weaker
features involving the two-particle manifold are also present; for
instance, the dashed curve highlighting line C. Upper: the zero-time
correlation function g(2). (b) Closer view of the region of parameter
space bounded by the white box in panel (a) but calculated at the
higher driving "/γp = 1 to highlight the crossing of the features
labeled Lines B and C. (c) Transitions involved in spectral lines B
and C, with only the relevant modes drawn.

Weaker features are also present, which do not significantly
affect the steady-state photon populations, but may strongly
modify statistical quantities such as g(2). Line C in Figs. 3(a)
and 3(b) corresponds to emission from the highest two-particle
state |2+⟩ to an intermediate level, as drawn in Fig. 3(c). In the
vicinity of the crossing of emission lines B and C at Ũ/J̃ =
(9 −

√
17)/4, the population in |2−⟩ reaches a maximum, as

photons emitted as part of the line B decay process may transfer
population instead to |2−⟩. We now calculate the properties of
the modes |2±⟩ by diagonalizing the Hamiltonian of Eq. (1) at
zero driving " = 0. In the Fock basis, we find the normalized
forms

|2−⟩ = −
√

2#c|11⟩ + J (|02⟩ + |20⟩)√
2#c(2#c + U )

,

|2+⟩ =
√

2(#c + U )|11⟩ + J (|02⟩ + |20⟩)√
2(#c + U )(2#c + U )

.

Defining (α , α ∈ {−,0,+} as the ratio of the projections of the
mode |2α⟩ into the space spanned by the states {|20⟩,|02⟩} to
the projection into the distributed state |11⟩, we find (− < 1

2
always, while (+ > 1

2 . The analogous ratio for coherent light
is (coh = 1

2 .
There is therefore a greater probability of finding the two

photons of the mode |2−⟩ in the same resonator than distributed
between them, relative to the driven |2+⟩ mode. This is
reflected in the enhanced probability of simultaneous emission
of two photons (g(2) > 1) around this crossing. In contrast
the mode |2+⟩ favors delocalising its two photons relative
to the statistics of the driving laser. Thus, we observe either
approximately coherent, or antibunched light in all regions
of parameter space except in the vicinity of the crossing of
lines B and C. This underlying mechanism makes the photon
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bunching qualitatively different from that of discrete breather
modes in dissipative nonlinear lattices [31,32].

For resonator couplings J < γp, the global physics of the
system resembles that of an isolated nonlinear resonator driven
at its resonance frequency, such that antibunching is always
expected—in spectral terms, the crossing of lines B and C is
hidden inside the coalesced lines A and B.

IV. LARGER SYSTEMS

We now investigate how the correlations presented in
Fig. 2(b) evolve as the system size increases, continuing to
drive the commensurately filled ground state. An analytic
approach valid for arbitrary Hamiltonian couplings beyond
M = 2 resonators is intractable. Instead, we numerically
calculate the eigenvector of the effective Hamiltonian Ĥ(M)

eff
with eigenvalue closest to zero (taking a series of successively
weaker drivings "/γp to ensure convergence of observables).
Exploiting the translational invariance of systems with periodic
boundary conditions allows us to access systems of up to
M = 7 resonators while retaining three photons per resonator
in simulations.

Figure 4 shows the evolution of the counterintuitive
bunched region for increasing system sizes up to M = 7
resonators. We see a reduction in the magnitude and range
of interaction strengths for which bunched light is observed
as the system size increases. The bunching region is seen to
retreat up the J axis, while smaller interaction strengths U are
necessary to induce the bunching. This explains the reduction
in the magnitude of the effect observed for cross sections at
constant resonator coupling, as in Fig. 4(a).

Rigorous quantum trajectory calculations based on the
matrix product state representation and the time-evolving
block decimation algorithm [33–35] performed at a finite
driving strength broadly agree with the results obtained via
numerically exact diagonalization of Ĥ(M)

eff , as presented in
Fig. 5.

We solve for NESS observables in the trajectory formalism
by first finding the unit-filled ground-state frequencies ω

(M)
−

via imaginary time evolution of a unit-filled matrix product
state (MPS). The steady state of a system is then obtained

FIG. 4. (Color online) (a) Correlation function evaluated as
a function of increasing nonlinearity at fixed resonator coupling
J/γp = 101. Note the M = 2 results are not included as the bunching
in this case is significantly larger. (b) Extent of the bunched region in
(J,U ) parameter space, as measured from U = ULHS corresponding
to the peak g(2), to U = URHS at which the correlations change from
bunched to antibunched, for a range of resonator couplings J .

FIG. 5. (Color online) (a) Evolution of a slice along line J = JA

through diagram of Fig. 2(a) for increasing system size, at fixed
hopping J/γp = 10 and driving "/γp = 0.4. The solid blue and
red lines are exact-diagonalization results for small systems. Inset
illustrates the metric we use for the width of the bunching region in
panel (b)—squares denote the maximum bunching, and circles show
where the correlation function crosses from bunched to antibunched
at g(2) = 1. (b) Evolution of extent of bunching region in parameter
space for increasing system size. Note that, in these calculations,
we assumed open boundary conditions, in contrast to the periodic
boundaries used in the main article. For comparison, panels (c) and (d)
show results obtained by finding the stationary states of the effective
quantum trajectory Hamiltonian Ĥ(M).

by driving at the frequency ω
(M)
− /M by evolving a matrix-

product-operator representation of the system density matrix
in real time using the time-evolving block decimation (TEBD)
algorithm under the action of Eq. (2) in the main text.
Consistency between the two stages of the computation is
ensured by using the same MPS truncation parameter χ in
both the ground-state and trajectory calculations.

Figure 5 shows full trajectory results for system sizes
up to M = 9. Each point corresponds to an average over
20 trajectories, and each trajectory is itself averaged over
15 000 time steps. All calculations used a matrix product
state parameter χ = 60. This figure shows that the bunched
emission discussed in the main text also occurs for larger
system sizes M at finite driving amplitude. The phenomenon
is therefore robust and may be expected in finite-sized
experimental arrays. We also see that the precise features of
the bunching region do depend on drive strength, as already
observed for M = 2 in Fig. 2(b).

V. PHOTON STATISTICS IN JAYNES-CUMMINGS ARRAYS

Near-future circuit QED systems will most probably realize
a few-photon resonator nonlinearity via a Jaynes-Cummings
interaction with embedded two-level systems [10], as de-
scribed by the Jaynes-Cummings-Hubbard Hamiltonian in a
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FIG. 6. (Color online) Steady-state observables for a two-site
Jaynes-Cummings array, driven at its lowest two-particle resonance.
Parameters: g/γp = 10. (a) Zero-time photon correlation as a func-
tion of resonator coupling J and atom-resonator detuning #, playing
the part of an effective photon nonlinearity. (b) Spectral function
|S(ω)|2 evaluated along the dashed line in panel (a), again showing a
crossing of emission lines promoting photons to a state with enhanced
probability of bunched emission.

rotating frame:

Ĥ(M)
JCH =

M∑

j=1

[#câ
†
j âj + (#c − #)σ̂+

j σ̂−
j + "(â†

j + âj )]

+ g

M∑

j=1

(â†
j σ̂

−
j + âj σ̂

+
j ) − J

∑

⟨j,j ′⟩
(â†

j â
′
j ). (4)

Here # = ωc − ωa denotes the difference between the res-
onators’ frequency and the TLS transition frequency, g is
the Jaynes-Cummings coupling strength, and σ̂± denote
two-level-system (TLS) raising and lowering operators. The
JCH is known to possess a localized-delocalized transition as
either the hopping J is increased, or the Jaynes-Cummings
parameter # is made more negative. This transition is similar
in some respects to the phase transition of the BH model,
although it also differs in fundamental ways on account of the
different nature of the systems’ intrinsic excitations (bosons
and polaritons, respectively) [14–18,22].

Figure 6 presents evidence that the mechanism underlying
the bunched emission discussed above in the context of a
the driven Bose-Hubbard model persists in this qualitatively
different setting for realistic atom-resonator couplings and loss
rates and is therefore observable in near-future state-of-the art
experiments involving just two coupled resonators.

VI. CONCLUSIONS

We have proposed the selective excitation of photonic
many-body modes of interest in open resonator arrays using
external driving lasers, over which we have full control of
frequency and amplitude. We have shown how a combination
of the equilibrium Hamiltonian structure and nonequilibrium
operation lead to an interaction-induced region of bunched
emission. This feature was found to persist in mesoscopic-
sized arrays and is also found under a more realistic array
description, making its observation feasible in coming exper-
iments.

APPENDIX A: DENSITY-MATRIX SOLUTION FOR
TWO-SITE BOSE-HUBBARD SYSTEM

Here we explicitly solve for the steady-state density-matrix
elements of the driven-dissipative two-site system described
by Eq. (1) under driving and dissipation. That is, we solve
for ρss satisfying L(M)[ρss] = 0 in a minimal basis consisting
of states with at most two photons in the system, where the
superoperator L(M) is defined in Eq. (2) of the main text.
We recursively solve for density-matrix elements at increasing
powers of the weak driving strength "/γp, as in Ref. [8].

For notational convenience, we label the basis states in
the following way: |0⟩ → 1, |10⟩ → 2, |01⟩ → 3, |11⟩ → 4,
|20⟩ → 5, |02⟩ → 6. The symmetry of our system under
exchange of resonators 1 ⇔ 2 allows for a considerable reduc-
tion in the necessary size of the density-matrix description. The
assumption that the system is very weakly driven is embodied
in the assumption ρ11 ≈ 1.

Following the approach in Ref. [8], we derive equations
involving increasing orders of the driving strength "/γp, with
the goal of calculating g(2) = ρ2

55/ρ22. Here we give solutions
for the elements ρ55 and ρ22, which in turn depend on other
elements:

ρ55 = "

2γp[(2γp)2 + (2U )2 + (4J )2]

×
[
Im(ρ25)8

√
2
(
γ 2

p + U 2 + 2J 2 − JU
)

+ Re(ρ25)8
√

2γpJ − Im(ρ24)8J (−2J + U )

− Re(ρ24)8γpJ
]
.

The elements ρ24 and ρ25 are given by

ρ24 = "
2
√

2J (
√

2ρ22 − ρ15) − i(2ρ22 − ρ14)
(
i#c + iJ + 2iU − 3

2γp

)
(
i#c + iJ − 3

2γp

)(
i#c + iJ + 2iU − 3

2γp

) ,

ρ25 = "

√
2J (2ρ22 − ρ14) + i(ρ15 −

√
2ρ22)

(
i#c + iJ − 3

2γp

)
(
i#c + iJ − 3

2γp

)(
i#c + iJ + 2iU − 3

2γp

) .

These depend on the elements ρ14 and ρ15 which are proportional to the vacuum-state population, to first order in the driving

ρ14 = 4J" + 2i"(γp − 2i#c − 2iU )
(γp − 2i#c)(γp − 2i#c − 2iU ) + 4J 2

(
1 + 2i(#c−J )

γp

)

1 +
( 2(#c−J )

γp

)2

(
2i"

γp

)
ρ11,

ρ15 = 2
√

2J" +
√

2i"(γp − 2i#c)
(γp − 2i#c)(γp − 2i#c − 2iU ) + 4J 2

(
1 + 2i(#c−J )

γp

)

1 +
( 2(#c−J )

γp

)2

(
2i"

γp

)
ρ11.
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Meanwhile the denominator of g(2) is given by

ρ22 =
(

2"

γp

)2 1

1 +
( 2(#c−J )

γp

)2 ρ11.

The correlation function g(2) does not appear to be amenable
to physical insight or meaningful mathematical manipulation.
Instead, in the following section we employ a pure-state wave-
function ansatz for the state of the system, i.e., setting ρss ≡
|&ss⟩⟨&ss| and observing that, at weak driving, the purity of
the steady-state density matrix is Tr(ρ2

ss) ≈ 1.

APPENDIX B: WAVE-FUNCTION ANSATZ SOLUTION

We now make the ansatz |&ss⟩ = C00|00⟩ + C1(|01⟩ +
|10⟩) + C11|11⟩ + C2(|02⟩ + |20⟩) and find the zero eigenvec-
tor of the effective-trajectory Hamiltonian obtained by replac-
ing the resonator frequency by ωc → ωc − iγ /2 in the Bose-
Hubbard dimer Hamiltonian. We find the following results for
the wave-function coefficients, after exploiting the symmetry
of the system by setting C02 = C20 ≡ C2 and C01 = C10 ≡ C1:

C00 ≈ 1,

C1 = − "C00

#c − J − i γ
2

,

C2 = − "C1√
2(#c + U − iγp/2)

(
J

#c − iγp/2
+ 1

)
,

×
[

1 − J 2

(#c − iγp/2)(#c + U − iγp/2)

]−1

.

From these we may explicitly obtain the correlation function
as g(2) = 2|C2|2/|C1|4 = 2|C2/C2

1 |2 as

g(2) = 1
∣∣1 + AU

A2−J 2

∣∣2 ,

where A = #c − iγp/2. To solve for the parameters
(Ũ ,J̃ )crit ≡ (Ucrit/γp, Jcrit/γp) at which bunching sets in,
we set g(2) = 1 and additionally implicitly differentiate the
resulting expression, setting dJ̃ /dṼ = 0, to find the result

J̃crit = Ũ 4
crit =

√
3 + 2

√
2

4
.

We may also obtain the limiting dividing line J̃d = J̃d (Ũ )
tracing the crossing from super- to sub-Poissonian statistics
(g(2) = 1) for large hopping rates J ≫ γp as

lim
J̃≫1

J̃d =

√
Ũ

2
.
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