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Dynamics of nonclassical light in integrated nonlinear waveguide arrays and generation of robust
continuous-variable entanglement
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We study a class of nonlinear waveguide arrays in which the waveguides are endowed with χ (2) nonlinearity
and coupled through the evanescent overlap of the guided modes. We investigate the viability of such an
array as a platform for generating both bipartite and tripartite continuous-variable entanglement. We explicitly
address the effect of realistic losses on the entanglement produced, discuss the possible types of nonlinear
materials that could be used, and suggest solutions for the possible phase matching issues in the waveguides.
The simultaneous generation and manipulation of the light on a single waveguide chip circumvents the usual
bandwidth problems associated with the use of external bulky optical elements and makes this avenue promising
for further investigation.
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I. INTRODUCTION

The generation and manipulation of light are at the heart
of optical physics and photonics technologies. In particular,
waveguides offer highly flexible tools for manipulating and
processing light over short distances and have thus found
applications in diverse areas of research [1]. For example,
in optics they form the building blocks of a more complex
structure commonly known as waveguide arrays [2]. The
possibility of manipulating various interactions by design
makes these arrays an experimentally accessible tool for
studying a variety of effects from a large number of fields
of physics. Another salient feature of this system is the
possibility of controlling the exact initial conditions for the
light propagating inside the array. Moreover, the decoherence
rate in this system is very low, even for longer propagation
distances [3].

Relevant studies so far include realization of condensed-
matter–like effects [4–11], quantum random walks [3,12],
and the quantum Zeno effect [13]. Quite recently, it has also
been shown that one can tailor the dispersion relation for the
waveguides to study the famous Bose-Hubbard Hamiltonian
in a classical setup [14]. Furthermore, waveguides along with
single photons have been shown to form basic units for
quantum network architectures [15].

The above works have shown that the waveguide arrays are
quite suitable for investigating a variety of physical effects and
can also be used to effectively manipulate various quantum
states of light. The question naturally arises as to whether
such structures can also be utilized as a flexible tool to
both generate and manipulate the quantum states of light at
the same time. Here we explore the issue by studying an
experimentally accessible model for the waveguide arrays
where the waveguides are endowed with χ (2) nonlinearity and
coupled through the evanescent overlap of the guided modes.

As a relevant application of our study, we choose to study
the generation of continuous-variable entanglement using the
waveguide structure in an integrated manner on a single
waveguide chip [16]. We note that a detailed discussion about
the entanglement in continuous-variable systems can be found
in Ref. [17]. Conventionally, the continuous wave entangled

light has been generated from optical parametric process inside
an optical cavity. However, the use of optical cavities severely
limits the bandwidth of the entangled beam generated in
such processes. It would thus be highly desirable to avoid
the use of optical cavities. The use of optical waveguides,
where the transverse field confinement results in an increase
of the nonlinear efficiency, can make up for the buildup of a
reasonably high finesse cavity.

II. SYSTEM DESCRIPTION

We consider a waveguide system which contains an array
of N identical waveguides endowed with χ (2) nonlinearity.
We assume that each of these waveguides is pumped with
coherent light (as shown in Fig. 1). The waveguide arrays
studied here can be implemented, for example, by using
the periodically poled lithium niobate waveguides employed
in the work of Yoshino et al. [18]. A recent manuscript
has also investigated the intriguing quantum correlations
generated in a system consisting of quadratic waveguide arrays
[19]. However, the emphasis in that manuscript is on very
different features. Specifically, that manuscript investigates
the generation and manipulation of light at the single-photon
level. In our work we study the possibility of generating
broadband continuous-variable entanglement in the waveguide
structure and discuss the possible applications of the system in
the field of continuous-variable information processing [16].
The coupling between the waveguide is achieved by the
evanescent overlap of the guided modes [20]. We assume that
the pump field is in a strong coherent classical field, which is
strong enough to remain undepleted of photons over the entire
length of the waveguide. The field operators evolve according
to the Heisenberg equations given by

ȧj = −2igja
†
j + iJj (aj−1 + aj+1), (1)

where aj (a†
j ) refers to the bosonic creation (annihilation)

operator for the field in the j th waveguide. The nonlinear
coupling parameter gj depends on strength of the pump laser
and the nonlinear susceptibility of the waveguide medium.
The linear coupling parameter Jj represents the rate at which
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FIG. 1. (Color online) Schematic of a waveguide array with χ (2)

nonlinearity. The correlation function M(j,k) can be measured by
feeding the waveguide modes into the homodyne detectors. The
signals from the homodyne detectors are subtracted or summed
electronically and the variance is measured by a spectrum analyzer.
The resulting values of the variances can be used to calculate the
correlation function M(j,k). The elements are: symmetric beam
splitters BS, local oscillator LO, photodiode PD.

the photons are transferred to the neighboring waveguides.
Note that we have ignored the evanescent coupling between
the pump beams because the coupling coefficient for the pump
beam would generally be much smaller compared to the signal
ones, due to the weaker overlap between the waveguide modes
at higher frequencies [20].

The evolution of the photon annihilation operators aj of
output modes can be written as

aj (t) =
∑

k

ak(0)Aj,k +
∑

k

a
†
k(0)Bj,k, (2)

where the summation is over all possible input modes.
Moreover, Aj,k and Bj,k denote the complex matrix element,
which depends on the coupling parameters g and Jj . In
addition, the functions Aj,k and Bj,k depend on the propagation
distance z over which the light distribution evolves. We
note that Eq. (2) signifies the simultaneous generation and
manipulation of light in waveguide arrays. Pump photons
are converted to the signal photons within the individual
waveguides, whereas the evanescent coupling between the
signal modes leads to the linear spreading of the light across the
waveguide array. Although the case of two coupled nonlinear
waveguides which constitute the nonlinear optical couplers has
been studied earlier [21], we emphasize here that our quantum
formalism also applies to the case of a nonlinear waveguide
array of a large number of waveguides, as is now feasible
according to the experimental work of Ref. [20].

III. DYNAMICS

Before moving to the main part, we first analyze the
mean intensities behavior at the output which is an obvious
measurable quantity in any similar experiment. The input
to the waveguide system can either be in the form of a
separable or entangled state. For the case when the signal
modes are initially in the vacuum state, the intensity will be
given by Ij (t) =

∑N
l=1(|Bj,l|)2. In this case, the pump mode

is spontaneously converted to the signal modes within the
individual waveguides. Further, because of the linear coupling
between the inter-waveguide modes, the light spreads across
the array. We note that in this case the light generated at
the output of the waveguide arises solely because of the
vacuum fluctuations. For the obvious, most interesting case of

FIG. 2. (Color online) The intensity Ij (t) as a function of
waveguide index j for the case of 21 waveguides. The coupling
parameters are chosen such as g/J = 1/2 (red solid line) and
g/J = 1/3 (blue dashed line). The input to the waveguide is in j = 10
waveguide. The input is a coherent state with amplitude α = 5. We
are looking at the output intensity at t = 2.5.

a coherent light |α⟩ fed into the mth waveguide, the intensity
evolution among the waveguide sites can be written as

Ij (t) = (|α|)2(|Aj,m|2 + |Bj,m|2)

+ (α2Aj,mB∗
j,m + H.c.) +

N∑

l=1

(|Bj,l|)2. (3)

It is interesting here to briefly compare the quantum walk
of coherent light in linear waveguide arrays as analyzed, for
example, in Ref. [3], with the arrays discussed here. In the
linear case, we just have the contribution from the first term for
I (t) and we see the ballistic propagation of the coherent light
across the waveguide arrays. The quantum walk of coherent
light in our system shows a very different behavior depending
on the ratio of g/J . For a higher value of g/J , we found
that the input light is amplified and remains localized in the
input waveguide. For a lower value of g/J , the input light
spreads across the array. This is schematically shown in Fig. 2.
We note here the difference from all previous works, except
Ref. [19], which essentially correspond to the transfer of the
quantum light while the input light itself is generated outside
the waveguide system by using bulk optical elements [12,22].
Such schemes involving bulk optical elements suffer from
severe limitations as far as stability and physical size are
concerned and may also introduce quantum decoherence.

IV. GENERATING CONTINUOUS-VARIABLE
ENTANGLEMENT

As a relevant application to our system, we investigate
the possibility of generating continuous-variable entanglement
in an integrated manner. We define the quadrature operators
for the j th waveguide given by qj ≡ (aj e

−iφ + a
†
j e

iφ)/
√

2

and pj ≡ (aje
−iφ − a

†
j e

iφ)/
√

2 i. We use the criterion of
Ref. [23] for studying the entanglement between the waveg-
uide modes and define the correlation between two waveg-
uide modes as M(j,k) = ⟨a†

j aj ⟩ + ⟨a†
kak⟩ + e−2iφ⟨ajak⟩ +

e2iφ⟨a†
j a

†
k⟩. The correlation function M(j,k), our entanglement

measure, can be probed by using homodyne detectors scanning
across the waveguide array output as shown in Fig. 1. We note
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FIG. 3. (Color online) The correlation function M(j,k) as a
function of τ (τ ≡ J t/π ) for the case of five waveguides. The
coupling parameters are chosen such that (a) g/J = 1/5 (black line),
(b) g/J = 1/7 (red dashed line), and (c) g/J = 1/9 (blue line).

that a similar correlation measurement has been carried out
in the work of Peruzzo et al. [22], although we emphasize
that the detection process in our case is fundamentally different
than the one reported in that work. In the experiment by
Peruzzo et al., the output from the waveguide modes is detected
with single-photon detectors. On the other hand, in our case
the waveguide modes at the output are mixed with a strong
local oscillator, as shown in Fig. 1. Since the local oscillator
amplifies the waveguide modes, one can use high efficiency
detectors that work only with strong signals. Further, note
that we have written M(j,k) in terms of photon annihilation
and creation operators of the waveguide modes, but in the
actual homodyne measurement one measures the quadrature
observable, which can then be used to calculate the correlation
function M(j,k). The negativity of M is a sufficient condition
for entanglement. We first discuss our analytical result for the
bipartite case of two waveguides, which reads

M(1,2) = 4 sin2(&t)g(2g − J )/&2, (4)

where & ≡ (J 2 − 4g2)1/2. Clearly, M(1,2) < 0 for J > 2g,
and thus entanglement occurs. For the case of five waveguides,
we show our numerical results in Fig. 3. The negative values of
M(i,j ) in Fig. 3 clearly demonstrate the entanglement between
the inter-waveguide modes.

The system of waveguides we propose can also
act as a compact source of tripartite entangled light.
van Loock and Furusawa [24] have shown that for
a fully inseparable three-mode system, it is sufficient
to measure Vi,j,k = V (Xi − (Xj + Xk)/

√
2) + V (Yi + (Yj +

Yk)/
√

2) < 4, where the mode indices i, j , k are all different,
to demonstrate the inseparability. The quadrature operators for
each mode are defined as follows: Xi = aie

−iφ + a
†
i e

iφ,Yi =
−i(aie

−iφ − a
†
i e

iφ). In our case, we choose φ = π/2 and study
the evolution of V2,1,3 for g/J = 2/3 for the case of three
waveguides in Fig. 4 and show that the conditions V2,1,3 < 4
are clearly satisfied, meaning the three waveguide modes are
entangled.

V. LOSSES AND EXPERIMENTAL FEASIBILITY

Loss is the greatest challenge facing the implementation
of integrated photonic technologies, and it is inevitable in
real-world systems. Thus an immediate question of interest
arises: How does this loss affect the entanglement in the

FIG. 4. (Color online) The correlation function V2,1,3 as a function
of t for the case of three waveguides. The coupling parameters are
chosen such that g/J = 2/3.

waveguide modes? It is well known that entanglement is quite
susceptible to decoherence [25]; thus the previous question is
quite relevant in context to quantum information processing
using waveguides. Since the two waveguides are identical,
we have taken the loss rate of both modes to be the same.
We can model the loss in waveguides in the framework of
system-reservoir interaction well known in quantum optics,
and it is given by

Lρ = −γ

2
(â†âρ − 2âρâ† + ρâ†â)

−γ

2
(b̂†b̂ρ − 2b̂ρb̂† + ρb̂†b̂), (5)

where ρ is the density operator corresponding to the system
consisting of fields in the modes a and b. The dynamical
evolution of any measurable ⟨O⟩ in the coupled waveguide
system is then governed by the quantum-Liouville equation of
motion given by ρ̇ = − i

h̄
[H,ρ] + Lρ, where ⟨Ȯ⟩ = Tr{Oρ̇},

the commutator gives the unitary time evolution of the system
under the influence of coupling, and the last term accounts for
the loss.

We use the above equation for the density operator to
evaluate the correlation M(1,2) given in the presence of loss.
We also set φ = 0 in the equation for M(j,k). The results are
shown in Fig. 5. We see there that even for reasonable large
values of the loss to coupling ratio the waveguides will still be
entangled.

γ /J = 1/5

γ /J = 2/5

γ  = 0

t

M
(1

,2
)

FIG. 5. (Color online) The correlation function M(1,2) as a
function of t for the case of two waveguides in the presence of loss.
The coupling parameters are chosen such that g/J = 2/5. The loss
γ is taken to be γ = 0 (solid line), γ /J = 1/5 (dotted line), and
γ /J = 2/5 (dashed line).
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We emphasize that such an integrated approach for the
simultaneous generation and manipulation of nonclassical
light seems feasible. In particular, the experiments by Iwanow
et al. [20] investigate the process of second harmonic gener-
ation in the waveguide arrays of periodically poled LiNbO3,
which feature a quadratic nonlinearity. We note that the second
harmonic generation is the reverse of the downconversion
process. Low loss waveguides with losses of 0.2 dB/cm for
the fundamental wave and 0.4 dB/cm for its second harmonic
were fabricated in these experiments using the technique of
quasi-phase-matching (QPM) [26]. Because of their lower
values for the loss, such arrays are ideally suited for the
experimental implementation of our proposal. Moreover,
integrated optical circuits based on LiNbO3 substrates are
now very well established, and a great variety of devices based
on this technology can be integrated on the single chip. For
instance, lithium niobate waveguides have been extensively
employed for applications in electro-optic switching and phase
modulators.

Except for the losses, for a successful implementation
one would also need to ensure the downconversion pro-
cess to be efficient, in which the usual phase-matching
condition must be satisfied [1,27]. The phase-matching in
waveguide structures can be achieved using the quasi-phase-
matching in combination with ferroelectric materials. For
example, in addition to an enhanced nonlinear efficiency
due to tight confinement of the interacting waves inside
the waveguides, the QPM allows working with the highest
nonlinear coefficient of lithium niobate (d33 ≈ 30 pm/V),
which is much larger than that (d31) commonly used in
birefringent phase-matching in bulk crystals. Other materials
which can be used as a nonlinear medium inside optical wave-
guides include periodically poled potassium titanyl phosphate
(PPKTP), quasi-phase-matched LiTaO3, and periodically

poled stoichiometric LiTaO3. Recent experiments have shown
that with the advancement in waveguide fabrication techniques
and improvement in the detection schemes, it is possible
to achieve better than −5 dB of pulsed traveling-wave
squeezing in MgO-doped periodically poled LiNbO3 (PPLN)
waveguides [28,29].

VI. CONCLUSION

In conclusion, we considered the waveguide arrays with
χ (2) nonlinearity and studied the generation and manipulation
of nonclassical light in such a system. We also investigated
the possibility of generating broadband continuous-variable
entanglement in the waveguide structure. In our study, we
propose an integrated approach toward continuous-variable
entanglement based on integrated waveguide quantum circuits,
which are compact and relatively more stable. In addition, the
use of waveguide structure also eliminates the need for the
optical path alignment which is required in the bulk optical sys-
tems. The possibility of generating broadband entanglement
from waveguides could also help to avoid the use of optical
cavities from many key experiments in the area of broadband
continuous-variable quantum information processing. We can
further investigate the evolution of the Wigner functions in the
waveguide arrays [30]. Further, in our study we have assumed
the coupling parameter Jj to be constant, but one can also
make the value of Jj random [31], which is left for a future
contribution.
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