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Abstract. We propose a scheme for simulating the dynamics of neutrino

oscillations using trapped ions. For neutrinos in 1 + 1 dimensions, our scheme

is experimentally implementable with existing trapped-ion technology. We show

that the three-generation neutrino oscillations can be realized with three ions for

1 + 3 and 1 + 1 dimensions where the latter case only requires experimentally

proven two-ion interactions. For this case, we discuss two setups utilizing

different types of spin–spin interactions. Our method can be readily applied to

two-generation neutrino oscillations requiring fewer ions and lasers. We give a

brief outline of a possible experimental scenario.
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1. Introduction

Ever since Pauli inferred their existence, the exact nature of neutrinos has been a mystery due

to their tendency to avoid interacting with other particles. One prominent question was whether

neutrinos are massive particles. In 1957, Pontecorvo [1] suggested that massive neutrinos can

oscillate (change their flavour) and later noted that this could explain the solar neutrino problem.

Since then large-scale experiments have confirmed that neutrinos have small but non-zero

masses and give rise to oscillations between flavour eigenstates [2]. The discovery of neutrino

oscillations is regarded as one of the most important discoveries of modern elementary particle

physics and has led to many proposals for physics beyond the standard model.

In recent years, there has been growing interest in simulating exotic relativistic phenomena

using other controllable quantum systems. There have been proposals to simulate the equation in

curved spacetime [3], the Unruh effect [4] and black-hole properties of BECs [5]. More recently,

a scheme to simulate the many-body dynamics of a Dirac particle, namely the Schwinger effect,

was also proposed [6]. The seminal work on quantum simulation of the Dirac equation using

trapped ions by Lamata et al [7] and its subsequent experimental realization by Gerritsma

et al [8] are of particular interest to the current work. More recently, there has been a proposal [9]

and experimental demonstration [10] to simulate the Klein paradox.

On the other hand, the trapped-ion system is also one of the leading candidates for the

simulation of quantum spin systems. The idea was originally proposed by Porras and Cirac [11]

and recently similar schemes were verified experimentally. These experiments include the

simulation of a quantum Ising model with two [12] or more [13] ions, where phonon-mediated

spin–spin interactions are realized [14–19]. Combining the interactions giving rise to the linear

momentum term used in the simulation of the Dirac equation and the spin–spin interactions

used in the simulation of the Ising models simultaneously broadens the types of systems that

can be simulated with trapped ions. For example, Casanova et al [20] have considered quantum

simulation of the Majorana equation and unphysical operations.

In this work, we show that neutrino oscillations can be simulated in trapped-ion systems.

In particular, observation of neutrino oscillations in 1 + 1 dimensions requires only the trapped-

ion technology demonstrated in experiments. Because whether the neutrinos are Dirac or

Majorana particles has no observable consequences in neutrino oscillations, we assume, without

loss of generality, that neutrinos are Dirac particles as described by the minimally extended

standard model. In this model, the charged current interaction creates a flavour eigenstate which

is in a superposition of mass eigenstates. Our scheme paves the way for an experimental

study of neutrino oscillations with controllable creation of the initial state and oscillation

length, allowing different types of neutrino oscillations experiments (see, for example, [22]

for more about different types of neutrino oscillation experiments) in a single setup. Also, non-

trivial initial states not observed in nature can be readily created. For example, a state in a

superposition of positive and negative energy eigenstates produces Zitterbewegung-like high-

frequency oscillations [23].

2. Standard theory of neutrino oscillations

Here, we reproduce the essence of the standard theory of neutrino oscillations where neutrinos

are assumed to be created in a momentum eigenstate [22]. So far, experiments have verified that

there are three flavours of neutrinos: electron, muon and tauon neutrinos, which we denote as
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⌫↵ with ↵ = e, µ, ⌧ . These flavour states are not mass eigenstates and therefore do not follow

the dynamics given by the Dirac equation. They are, however, related to the mass eigenstates

⌫k by a mixing matrix through the equation |⌫↵i = P
k U ⇤

↵k|⌫ki, where k = 1, 2, 3 is used to

label different mass eigenstates. Since a massive neutrino state obeys the Dirac equation, one

can write |⌫k(t)i = e

�iEkt |⌫ki, where Ek = ±p
(c|p|)2

+ (mkc2)2

, given that the state is in the

momentum eigenstate with momentum p. The time evolution of a flavour eigenstate is given by

|⌫↵(t)i =
X

k

U ⇤
↵ke

�iEkt |⌫ki

=
X

�

X

k

U ⇤
↵ke

�iEktU�k|⌫�i, (1)

which means that the probability for the flavour of the neutrino to change from ↵ to � is

P⌫↵!⌫� (t) =
X

k, j

U ⇤
↵kU�kU↵ jU ⇤

� j e

�i(Ek�E j )t . (2)

In the ultrarelativistic limit c|p| � mc2

Ek � E j = 1m2

k j c
4

2E
, (3)

with 1m2

k j ⌘ m2

k � m2

j and E ⌘ c|p|. Thus, after replacing the propagation time t with the

distance travelled L/c, the probability becomes

P⌫↵!⌫� (t) =
X

k, j

U ⇤
↵kU�kU↵ jU ⇤

� j e
�i

1m2

k j c3

2E L . (4)

Measuring the probability for flavour changes thus allows one to gain information about the

squared mass difference and the mixing matrix. In particular, if all the masses are equal there

would be no neutrino oscillations.

3. Trapped-ion implementation

Here, we show how the three-generation neutrino oscillations in 1 + 1 D can be implemented

in a system of three ions utilizing only previously tested ion manipulations. A similar

implementation, extending the original scheme in [7] to 3 + 1 D is also possible, but as

this scheme requires a slightly more complicated experimental setup not yet realized in the

laboratory, we focus on the 1 + 1 D case. The 3 + 1 D case is discussed briefly later.

3.1. 1 + 1 dimensions

In 1 + 1 D the Dirac equation reads [24]

i

@ 

@t
= �

c p̂�x + mc2�z
�
 , (5)

which can be simulated by a single trapped ion with two internal levels [7, 8]. The ion is driven

by a bichromatic laser that couples the internal levels with motional sidebands to create the

Dirac Hamiltonian

HD = 2⌘1�̃�x p̂ +��z, (6)
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where 1= p
1/2m̃! is the size of the ground state wave function with ion mass m̃; ! is the

frequency of the vibrational mode coupled to the internal states via the bichromatic laser. ⌘ is

the Lamb–Dicke parameter, p̂ is the momentum operator for the phonon mode and the � term

arises from the detuning 2� between the bichromatic light field and the qubit transition. This

Hamiltonian is equivalent to the Dirac Hamiltonian in 1 + 1 D with c = 2⌘�̃1 and mc2 =�.

Neutrino oscillations arise from an interference between different energy eigenstates. To

mimic this effect we need the correct relativistic energy dependence and an ability to create

a superposition of different energy eigenstates, i.e. for  to be in a superposition of different

mass eigenstates. For 1 + 1 D, each neutrino is described by a two-component spinor related

to positive and negative energy states, which means that six basis states are required for three

generations. We construct these basis states as follows:

|⌫
1

i =
✓
↵|gggi
�|gegi

◆
, |⌫

2

i =
✓
↵|ggei
�|geei

◆
, |⌫

3

i =
✓
↵|eggi
�|eegi

◆
, (7)

where |gi and |ei denote the two internal states of a qubit. It is easily seen that 1 ⌦ �x ⌦ 1

|⌫ki =
�x |⌫ki, where the �x on the rhs exchanges the two basis states that define

|⌫ki. Also, it is easy

to work out that

Hss |⌫
1

i = (�
1

+�
2

) �z |⌫
1

i ,

Hss |⌫
2

i = (�
1

��
2

) �z |⌫
2

i ,

Hss |⌫
3

i = (��
1

+�
2

) �z |⌫
3

i , (8)

where Hss =�
1

�z ⌦ �z ⌦ 1 +�
2

1 ⌦ �z ⌦ �z. Therefore, with equation (6) we see that the

Hamiltonian

H = 1 ⌦ HD ⌦ 1 + Hss

= 2⌘1�̃ (1 ⌦ �x ⌦ 1) p̂ ��1 ⌦ �z ⌦ 1

+�
1

�z ⌦ �z ⌦ 1 +�
2

1 ⌦ �z ⌦ �z (9)

produces the correct dynamics for three generations of neutrinos. That is, the mass eigenstates

follow the Hamiltonian

H |⌫ki = �
c�x p̂ + mkc2�z

� |⌫ki, (10)

with neutrino masses m
1

c2 =�+�
1

+�
2

, m
2

c2 =�+�
1

��
2

, m
3

c2 =���
1

+�
2

.

As mentioned earlier, the H
D

term can be created by focusing a detuned bichromatic laser

on the second ion. The remaining part requires two-qubit gate-type interactions on the qubits

(1, 2) and (2, 3), respectively. One can get each of these two by selectively shining a pair of ions

with a laser tuned to a particular phonon mode to mediate the ion–ion interaction [14–16, 27].

The two sets of lasers should act on two different normal modes to avoid interfering with each

other. For example, the two gate-type interactions can utilize the centre-of-mass mode and the

zigzag mode in a transverse direction, while the linear momentum part utilizes the axial mode.

Then, for the Hamiltonian to work for all times, one needs ⌘⌧ 1 to avoid exciting a significant

number of phonons, which would result in qubit–phonon entanglement. Otherwise, one could

consider this as a gate operation which works only at certain times, in which case it is important

to make sure that the two two-qubit interaction terms have commensurate gate times.

Recently, Kim et al managed to create tunable spin–spin couplings between trapped

ions without excitation of real phonons [13, 17]. This scheme offers nearly ideal spin–spin

interactions that can be used to simulate neutrino oscillations. In their scheme all the ions are
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addressed simultaneously with two bichromatic laser beams whose optical beatnote detuning is

far from each normal mode compared to that mode’s sideband Rabi frequency. Thus the phonons

are only virtually excited and the qubit states evolve according to the Hamiltonian

H 0
ss = J

1

(�x ⌦ �x ⌦ 1 + 1 ⌦ �x ⌦ �x) + J
2

�x ⌦ 1 ⌦ �x (11)

at all times. Furthermore, the signs and magnitudes of J
1

and J
2

can be controlled by changing

the beatnote detuning and the spin-flip Rabi frequencies, which in turn allows one to control the

effective neutrino masses. To make use of this Hamiltonian, the basis states |gi, |ei should be

changed to the x-basis states, which we denote as |0i, |1i, and ions 1 and 2 should be swapped,

i.e.

|⌫
1

i =
✓
↵|000i
�|100i

◆
, |⌫

2

i =
✓
↵|001i
�|101i

◆
, |⌫

3

i =
✓
↵|010i
�|110i

◆
. (12)

To mimic the dynamics of a neutrino, we add the linear momentum term and three extra single-

qubit lasers:

H = 2⌘1�̃
�
1 ⌦ �y ⌦ 1

�
p̂

+ J
1

(�x ⌦ �x ⌦ 1 + 1 ⌦ �x ⌦ �x) + J
2

�x ⌦ 1 ⌦ �x

+ J
1

1 ⌦ �x ⌦ 1 + J
1

1 ⌦ 1 ⌦ �x � J�x ⌦ 1 ⌦ 1, (13)

yielding

H |⌫
1

i =
⇣

2⌘1�̃�y p̂ + �z (J + J
1

+ J
2

)
⌘

|⌫
1

i � J
1

|⌫
1

i,

H |⌫
2

i =
⇣

2⌘1�̃�y p̂ + �z (J + J
1

� J
2

)
⌘

|⌫
2

i � J
1

|⌫
2

i,

H |⌫
3

i =
⇣

2⌘1�̃�y p̂ + �z (J � J
1

+ J
2

)
⌘

|⌫
3

i � J
1

|⌫
3

i. (14)

Ignoring the constant term J
1

, we get the Hamiltonian that describes three types of

neutrinos with m
1

c2 = J + J
1

+ J
2

, m
2

c2 = J + J
1

� J
2

, and m
3

c2 = J � J
1

+ J
2

. Note that for

the momentum term we now use an alternative but equivalent form �y p̂, which can be

implemented in the same way as the original scheme by changing the phase of the laser; also,

we have assumed that the detuning is zero.

The experimental setups of Islam et al [13] and Kim et al [17] use transverse phonon

modes to mediate the spin–spin interactions, which means that the momentum part could utilize

an axial mode or the perpendicular transverse mode. Then, three extra lasers with appropriate

intensities and phases help create the appropriate mass terms. Figure 1 shows a possible

experimental setup to simulate neutrino oscillations; for visibility three extra lasers addressing

each ion are not shown in the figure.

We also note that the rotated version of equation (9) (so that the gate operations �z ⌦ �z

are replaced by �y ⌦ �y , for example) can be directly implemented using spatially dependent

Rabi frequencies as opposed to a uniform Rabi frequency used in deriving the Hamiltonian in

equation (11) [21].

For two generations, only two trapped ions are required, which is interesting not only

because they have fewer parameters, but also because some experiments are not sensitive to all

three generations and can be described by an effective model with two-neutrino mixing [22]. The

two-generation case is significantly simpler than the three-generation case as only one spin–spin

coupling term and one single-qubit rotation term are needed to generate the mass terms.
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Figure 1. A potential experimental setup to simulate neutrino oscillations. The

lasers �
1

and �
2

shine on all three ions with a given beatnote frequency and a

wavevector difference1k in a transverse direction, to create the mass terms with

the help of an extra laser acting on each ion (not shown on the figure). �, acting

on the second ion, creates the linear momentum term of the Dirac Hamiltonian.

So far we have proposed schemes that utilize multiple trapped qubits. However, if one could

find a stable multi-level trapped ion system, it will be possible to simulate neutrino oscillations.

For example, if there are three ground states and three excited states and a single bichromatic

laser addressing the three transitions, one has the Dirac Hamiltonian (6) for each transition. If

the transitions are not of the same frequency the masses would be different by default; otherwise,

one could use external fields to shift the energy levels. Possible difficulties in such single-ion

schemes are a short decoherence time and preparation of a general initial state.

3.2. 3 + 1 dimensions

Here, we give a brief description of how to simulate the full 3 + 1 D dynamics using

the four-level scheme introduced in [7]. We can get the Dirac Hamiltonian for three

generations by considering the following basis states:

| 
1

i = (|ai, |bi, |ci, |di) ⌦ |ai ⌦
|ai, | 

2

i = (|ai, |bi, |ci, |di) ⌦ |bi ⌦ |ai, | 
3

i = (|ai, |bi, |ci, |di) ⌦ |ai ⌦ |bi. Apart from the

Hamiltonian proposed in [7] acting on the first ion, we add the following spin–spin

interaction terms: �
1

(� ac
y � � bd

y ) ⌦ � ac
z ⌦ 1 ��

2

(� ac
y � � bd

y ) ⌦ � bd
z ⌦ 1 ��

3

(� ac
y � � bd

y ) ⌦ 1 ⌦
� bd

z to obtain the correct relativistic equations with m
1

c2 = (�+�
1

), m
2

c2 = (�+�
2

) and

m
3

c2 = (�+�
1

+�
3

), as can be easily verified. In most of the realistic cases there is only a

single non-zero momentum component which reduces the number of lasers needed.

4. A possible experimental scenario

Once the Hamiltonian is engineered an appropriate initial state has to be prepared to simulate

neutrino oscillations. For example, if the initial state is in a mass eigenstate one would observe

no oscillations. These cases are, however, quite special and flavours would oscillate for a generic
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initial state. A physically interesting case is when the initial state is in a definite flavour state

and has a momentum wave packet with a narrow momentum distribution around an average

momentum in the ultrarelativistic regime.

We describe a scenario where an electron neutrino is created which propagates for a certain

amount of time before it is detected. For concreteness we use the implementation that uses

�z ⌦ �z-type interactions. An electron neutrino state can be written as

|⌫e(p)i = 1p
3

(
p

2|⌫
1

(p)i � |⌫
2

(p)i), (15)

according to a mixing matrix called the tribimaximal mixing matrix that is consistent with

experiments [25, 26]. Note that this state only involves two states and thus can be described

by a two-generation model, i.e. with two ions. Since this state is not entangled:

|⌫e(p)i = |gi ⌦ (↵p|gi +�p|ei) ⌦ 1

3

(
p

2|gi � |ei), (16)

it can be prepared by performing single-qubit rotations on the ground state |gggi. Other flavour

states are entangled and need two-qubit gate operations. However, it has been shown that

arbitrary states can be created by repeated use of gate operations [28], and one such algorithm

for trapped ions has already been proposed [29]. A similar proposal to prepare hadronic states

in terms of up and down quarks and their spins has recently been given [30]. The next step

is to engineer the state of the phonon mode (momentum distribution). To create a state with

a given average momentum, one would cool down the ions to the ground state and apply a

momentum-displacement operation [8]. An arbitrary state can in principle be constructed by

performing state-dependent displacement operations; positive or negative energy eigenstates

have asymmetric spinor components that depend on the momentum of the particle and a

superposition of momentum eigenstates gives a physical wavepacket of the particle. However,

it is possible to approximate an energy eigenstate with a Gaussian momentum distribution for

a Dirac particle in 1 + 1 D by approximating the eigenstate with a spinor that has an asymmetry

between the average momenta of the components [8]. These approximate states can be created

by focusing a momentum displacement laser on the second ion. Note that the asymmetry in

the momentum distribution between the spinor components becomes smaller as one increases

the average momentum of the particle, so in the ultrarelativistic regime the momentum wave

function approaches the symmetric spinor  (p) / exp[�(p � p
0

)2/2� ](1, 1) with average

momentum p
0

. After creating the initial conditions the interactions can be switched on and

the required states would be observed after waiting long enough for a significant flavour change

to occur. The flavour change means changing probability amplitudes for the mass eigenstates

which corresponds to changing internal states. In principle, the full internal state can be

measured using quantum state tomography [31] after tracing out the phonon modes. However,

the different mass eigenstates can be made to have different fluorescence rates (with extra single-

qubit rotations) when coupled to an auxiliary level via an external laser field and therefore be

distinguished by looking at the fluorescence level [12]. Then, the measured fluorescence level

would oscillate in accordance with the neutrino flavour components. Exactly how it oscillates

would depend on a particular implementation used, but it can be calculated theoretically and

then compared to experimental results. Figure 2 shows, as an example, flavour oscillations of

an electron neutrino created at t = 0, calculated from equation (4) with the tribimaximal mixing

matrix. The kinetic and rest mass energies, shown in the caption, are chosen to correspond to

experimentally viable numbers while obeying the ultrarelativistic condition. The oscillations
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Figure 2. Neutrino oscillations of an electron neutrino in a momentum

eigenstate. The top (black) curve represents the electron component, whereas

the bottom (blue and red, overlapping) curves represent muon and tauon neutrino

components. The kinetic energy is 2⇡ ⇥ 40 kHz and the rest mass energies are

2⇡ ⇥ (5, 6 and 7) kHz.

should be clearly visible in real experiments with decoherence, as the decoherence time can

be of the order of 10 ms (see, e.g., [21]). The oscillation period decreases if one moves closer

to the normal relativistic regime where the kinetic and mass energies are similar, easing the

requirement for a required decoherence time.

5. Conclusion

We have proposed an experimentally feasible scheme for simulating two- or three-generation

neutrino oscillations using trapped ions. In 1 + 1 dimensions, our proposal only utilizes

experimentally proven techniques, allowing a controlled experimental observation of neutrino

oscillations. In this work, due to its relevance to neutrino oscillation experiments, we have

assumed that an initial electron neutrino is in an energy eigenstate with a momentum

distribution. However, other initial conditions can also produce neutrino oscillations and could

provide interesting alternative scenarios, e.g. outside the ultrarelativistic regime or initial states

that are not energy eigenstates. Also, the current setup allows simulations of different types of

neutrino oscillation experiments in a single experimental setup.
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