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Sine-Gordon and Bose-Hubbard dynamics with photons in a hollow-core fiber
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We show that sine-Gordon and Bose-Hubbard dynamics with stationary polaritons could be observed in a
hollow-core one-dimensional fiber loaded with a cold atomic gas. Utilizing the strong light confinement in the
fiber, a range of different strongly correlated polaritonic and photonic states corresponding to both strong and
weak interactions can be created and probed. The key ingredient is the creation of a tunable effective lattice
potential acting on the interacting polaritonic gas, which is possible by slightly modulating the atomic density.
We analyze the relevant phase diagram corresponding to the realizable Bose-Hubbard (weak) and sine-Gordon
(strong) interacting regimes and conclude by describing the measurement process. The latter consists of mapping
the stationary excitations to propagating light pulses whose correlations can be efficiently probed once they exit
the fiber using available optical technologies.
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I. INTRODUCTION

The Bose-Hubbard (BH) and sine-Gordon (sG) models
have been extremely successful in describing a range of
quantum many-body effects and especially quantum phase
transitions (QPT) [1]. Cold atoms in optical lattices so far
have been the most famous platform to implement these
models, where the Mott insulator (MI) to superfluid (SF)
QPT for a weakly interacting gas in a deep lattice potential
was observed [2]. More recently, it became possible to tune
the interactions between the atoms in the gas, leading to the
realization of the sG model and the Pinning QPT [3,4].

Alternative platforms in the field of quantum simulations
of many-body effects involve ions for quantum magnets [5]
and more recently photonic lattices for the understanding of
in-equilibrium and out-of-equilibrium quantum many-body
effects [6]. The photon-based ideas are motivated by significant
advances in the fields of cavity QED and quantum nonlinear
optics [7] and have initiated a stream of works on the many-
body properties of both closed and lossy cavity arrays [8].
More recently, a new direction has appeared in the field
of strongly correlated photons where hollow-core optical
fibers filled with cold atomic gases were considered [9,10].
The strong light confinement and the resulting large optical
nonlinearities in the single-photon level predicted for similar
systems [11] have motivated new proposals to observe photon
crystallization and photonic spin-charge separation [12].

We show here that it is possible to impose an effective
lattice potential on the strongly interacting polaritonic gas
in the fiber. This opens up possibilities for a large range of
Hamiltonians to be simulated with photons. Our first examples
analyze the simulation of the sG and BH models. We show
that the whole-phase diagram of the Mott-to-SF transitions
for both models can be reproduced, including a corresponding
photonic “pinning transition.” We conclude with a discussion
on the available tunability of the quantum optical parameters
for the observation of the strongly correlated phases. The latter
is possible by releasing the trapped polaritons and measuring
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the correlation on the photons emitted at the other end of the
fiber using available optical technology.

II. MODEL SETUP

The considered atomic level structure is shown in Fig. 1 and
comprises the typical stationary light setup [7,11] of ! type
atoms interacting with a probe and a control field. The process
to steer the system to the relevant strongly correlated regimes
can be divided into four stages: preparation and loading,
steering to strong interactions, creation of effective polaritonic
lattice, and measurement or probing of the phase diagram. In
the first stage, the one-dimensional cold atomic ensemble is
prepared outside the fiber using standard cold atom techniques
and is then transferred in the hollow core as described in [10].
The atoms are initially in the ground state |a⟩, and the fiber
is injected with a quantum coherent pulse Ê+ and a classical
field "+ from the left side. Switching off the control field
allows for the storage of the quantum pulse in the medium
in the usual slow-light manner. In the second stage, a pair of
classical fields "± are subsequently switched on from both
sides [Fig. 1(b)], making the stored excitation quasistationary
[11]. During this part, the initially detuned fourth level is
adiabatically brought closer to resonance, allowing for the
required nonlinear interactions. At this stage, the dynamics
of the polaritons are described by a nonlinear Schrödinger
equation as analyzed in [12] and can be tuned to either a
strongly or a weakly interacting regime. As we show here, an
effective periodic potential can be imposed on the polariton
gas by slightly periodic modulating the atomic density, which
allows for the simulation of a range of many-body effects on
a lattice like the pinning transition.

At the end of the second stage, the dynamics of photons
inside the medium is governed by the quantum nonlinear
Schrödinger equation [11,12]:

i∂t$ = − 1
2m

∂2
z $ + V $ + 2χ$†$2. (1)

Here $ = ($+ + $−)/2 is a dark-state quasistationary polari-
ton trapped in the Bragg grating created by the standing wave
formed by the control fields "± = ". $± are the forward- and
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FIG. 1. (Color online) In panels (a) and (b), an ensemble of cold
atoms with a four-level structure interacts with a pair of classical
fields "± in the hollow core. The fields create an effective Bragg
grating that transforms the excitations carried by an input pulse E+
into a quasistationary strongly interacting polariton gas [gray areas
in panels (c) and (d)]. By modulating the density of the cold atomic
ensemble, an effective tunable lattice potential for the polaritons can
be created, shown by red lines in panels (c) and (d). The interactions
of the trapped polariton gas and the depth of the effective lattice can
be tuned to simulate the BH or sG many-body dynamics and probe
the corresponding quantum phase transition from SF (upper part)
to MI (lower part) in panels (c) and (d). By switching "− off, the
photons exit the fiber and the phases of the system can be probed by
performing standard optical measurements, evaluating the first- and
second-order coherence functions of the emitted light.

backward-propagating polaritons originating from the coupled
photonic fields Ê± to atomic spin-wave excitations. In the
limit of a large optical depth,1 the symmetric combination
$ survives the time evolution while the antisymmetric
combination A = ($+ − $−)/2 is adiabatically eliminated.
The presence of one-photon detuning &0 leads to a quadratic
dispersion for the polariton field where the effective mass is
m = − &ω

2vvg
− (1Dna

4&0vg
; v and vg ≃ v"2

πg2na
are the group velocities

of light in empty and doped fibers, respectively. &ω is the
difference between the frequencies of quantum and classical
fields, ωq − ωc, and (1D is the spontaneous emission into
the fiber modes. The presence of δ (energy shift of level
|c⟩; Fig. 1) and &p (single photon detuning from the fourth
level) leads to the potential and interaction terms given as V =
&ωvg

v
− !(1Dδvgna

4"2 and χ = !2+(1Dvg

2&p
, where ! = "2

"2−δ&0/2 and

+ = &p−δ/2
&p−δ

.

III. ADDING A PERIODIC POTENTIAL

We add an effective polaritonic lattice by inducing a
periodic atomic density distribution through the application

1OD = naL(1D/( and (1D = 4πg2/v with (/(1D being the ratio
of the total spontaneous emission rate to spontaneous emission into
the waveguide.

of an external field such that the atoms in |a⟩ are now given
by na = n0 + n1 cos2(πnphz). Applying a microwave field at
state |a⟩ as a standing wave resonant with another hyperfine
state |u⟩ will transfer atoms from |a⟩ to |u⟩, depending on
their position in the field envelope. The ones on the nodes will
not be affected, and the ones on the antinodes will be most
affected. The final percentage of atoms “carved” off the initial
homogenous density will depend on the interaction time. Note
that |u⟩ state is not involved in the electromagnetically induced
transparency process. Assuming we tuned the interaction time
such that n0 ≫ n1, the new Hamiltonian reads

H =
∫

dz$†
[

h̄2

2m
∇2 + V0 + V1 cos2(πnphz)

]
$

+χ

∫
dz$†$†$$, (2)

where by tuning &ω and δ, V0 is zero and V1 =
−!(1Dδvgn1/(4"2) is the resulting imposed polaritonic
lattice depth. We stress here the dependance of the effective
polaritonic lattice on both the slow light parameters (group
velocity, trapping laser detuning and strength) and the modu-
lated atomic density. Finally, we note that the atomic lattice
modulation should be commensurate with the number of the
photons in the initial pulse for the pinning transition to occur
[4]. This means that the modulation length will approximately
fall in the microwave regime as the numbers of trapped photons
in the initial pulse are of the order of ten and the fiber is a few
centimeters in length.

IV. REACHING THE RELEVANT CORRELATED REGIMES

The degree of achieving a specific strongly correlated
polaritonic-photonic state is characterized by the feasibility
of tuning the Lieb-Liniger ratio of the interaction and kinetic
energies γ and the ratio of the depth of the polaritonic potential
to the recoil energy V1/ER to the relevant regimes [1,2]. With
ER = π2n2

ph/2m in our system, the above quantities read

γ = mχ

nph
= −!2+

8
(2

1D

&0&p

n0

nph
, (3)

V1

ER
= !

8π2

(2
1D

"2

δ

&0

n0n1

n2
ph

. (4)

Both can be controlled by tuning the one-photon detuning
&p/( (shifting the fourth level |d⟩ to or from the resonance),
by changing the strength of the control laser Rabi frequency
", and by tuning the atomic density modulation n1/na . In
Fig. 2(a), we plot the achievable regimes for γ as a function of
&p/(, "/(. In Fig. 2(b), we plot V1/ER as a function of "/(
and n1/na . We assume a total atomic decay rate from the upper
level ( ≃ 20 MHz, approximately atomic density of na =
107 m−1 (105 atoms into a 1-cm-long fiber), and a photonic
density of nph = 103 m−1 (with the input quantum light pulse
containing roughly 10 photons). For these values, γ and V1/ER
can be tuned in the range 0 to 5 and 0 to 30 respectively, which
allows for both the strong and weak interaction regimes to
be realized with our trapped polaritonic gas. We note that
the current state of the art in the number of atoms loaded in
similar hollow-core fibers is smaller by roughly one order of
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FIG. 2. (Color online) Plots of the Lieb-Liniger interaction
parameter γ as a function of the one-photon detuning &p/( and
the Rabi frequency "/( of the classical laser field (a) and the lattice
depth V1/ER as a function of "/( and the atomic density perturbation
n1/na (b). The parameters are taken as na = 107m−1, nph = 103m−1,
and (1D = 0.2(, &0 = 5(, and δ = 0.01( with ( ≃ 20 MHz as the
atomic decay rate.

magnitude or less. However, recent experimental progress in
the field shows that our requirements should be satisfied in the
very near future [10].

The losses, which mainly occur due to spontaneous emis-
sion from the upper levels, can be estimated by including the
corresponding terms in the Hamiltonian Eq. (2). In that case,
the effective parameters acquire an imaginary part which for
the effective mass, for example, reads m = −&ω/(2vvg) −
(1Dna/(4&0vg + 2i(vg), leading to a loss rate of κ = n2

phvg(

na(1D
.

These losses set an upper bound on the time scales for the
preparation of the states and the probing of the established
correlations. For the values under consideration in our system
(see Fig. 2), these translate to time scales of a few milliseconds,
which are within the reach of current optical loading and
measurement technology.

V. POLARITONIC-PHOTONIC PINNING TRANSITION

We now discuss the nature of the many-body states
generated by the addition of the effective polaritonic potential
and show that a “pinning transition” for polaritons can be
observed, similar to the one recently experimentally verified
for bosonic atoms [4]. This polaritonic pinning transition is
expected to transform continuously into the BH regime for
sufficiently deep effective lattices (large V1/ER) and small
interactions γ . To analyze each relevant phase of the system,
we make use of the corresponding BH and sG models from
many-body physics [1]. We also discuss the feasibility of
accessing the whole of the relevant phase diagram for both
cases, by simply tuning the optical parameters in our system.

We first analyze the strong interaction regime 1 ! γ !
5 for a weak effective potential, V1/ER ! 3. This regime is
clearly accessible in our photonic system, as we show in Fig. 2,
by appropriate tuning of the one-photon detuning &p, the
control laser strength ", and the periodic distributed atomic
density n1. In this case, the proper low-energy description of
the system described in Eq. (2) is given by the quantum sG
model, which reads [1]

H=
∫

dz

2

{
h̄vg

π
[(∂zθ )2+(∂zφ)2]+V1nph cos(4Kθ )

}
. (5)

(a) (b)
2.5 18 33.5 49 64.5 80

0

0.05

0.1

0.15

n 1/n
a

∆
p
/Γ

 sine-Gordon model
 Bose-Hubbard model

SF

MI

MI

SF

3 6 9 12 15
0

0.05

0.1

0.15

0.2

St
re

ng
th

 (E
R
)

n
1
/na 

 U
 J

 

 ∆p = 50Γ 

(%)

FIG. 3. (Color online) (a) The phase diagram for the trapped
polaritons in the fiber as a function of the single-photon detuning
and the atomic modulation, &p/( and n1/na , for the case of " = (.
(b) The interaction and tunneling strength for the weakly interacting
gas in the BH regime. The red dotted line at n1/na ≃ 0.093
corresponds to the Mott phase transition point (U/J )c ≃ 3.85. The
rest of the parameters are as in Fig. 2.

The first two terms account for the kinetic and interaction
energies of polaritons respectively, and ∂zθ and ∂zφ denote the
fluctuations of the long-wavelength density and phase fields
θ and φ [1]. The dimensionless parameter K = h̄nphπ/(mvg)
is known to be related to γ as K ≃ π/

√
γ − γ 3/2/(2π ) for

γ ! 10.
On the other hand, if we tune the system to the weak interac-

tion limit with small γ ! 1 and large V1/ER with V1/ER ≫ 1,
the system is characterized in a good approximation by the BH
model [2],

H = −J
∑

i

(b†i bi+1 + H.c.) + U

2

∑

i

ni(ni − 1), (6)

where J/ER = 4(V1/ER)3/4 exp(−2
√

V1/ER)/
√

π , U/ER =√
2/π3(V1/ER)1/4γ .
In Fig. 3(a), we show that by simply varying &p/(

and n1/na , the whole phase diagram corresponding both
to the sG and BH regimes can be accessed in our system
for realistic values of the optical parameters. We plot the
known phase-transition lines corresponding to the sG and
BH model occurring at V1/ER = 2π/

√
γ − γ 3/2/(2π ) − 4

and (U/J )c =
√

2 exp(2
√

V1/ER)γ /[4π (V1/ER)1/2] ≃ 3.85,
respectively [1,2]. In our case, these are probed by adjusting
the detuning and the laser coupling accordingly. The pinning
transition from SF to Mott is expected to occur for small
single-photon detunings &p/( ! 20 and for any atomic
density modulation n1/na less than 5% which correspond to
γ " 3.5. The BH Mott transition will occur in the opposite
weakly interacting regime and deeper lattices. In Fig. 3(b),
for a specific value of the &p/( = 50 corresponding to the
system with γ ≪ 1, we plot the interaction U and tunneling J
strengths as a function of n1/na to illustrate the BH dynamics.
We see that the transition occurs for n1/na ≃ 0.093, which
corresponds to known critical point of (U/J )c ≃ 3.85.

We mention here that our approach is adiabatic so the initial
input coherent state, an eigenstate of the initial noninteracting
Hamiltonian, will always remain an eigenstate of the instan-
taneous Hamiltonian and no dynamics or intermediate phases
will show up. This can be seen as follows: For the first part, the
preparation of the strongly interacting polariton gas is achieved
by slowly increasing γ from an initial small value γ ≪ 1 as
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FIG. 4. (Color online) The correlation functions g(1) and g(2) for
the trapped polariton gas in the strongly interacting regime (sG model)
as a function of the distance for different values of the interaction
strength γ for vanishing potential depth. The shown behavior is
directly mapped to the first and the second coherence functions of
the photons exiting the fiber, which can be measured using standard
optical techniques. Note the emergence of oscillation in g(2) as the
system gets closer to the Tonks gas.

γ = γ0e
ωF t with ωF ∼ n2

ph/m the effective Fermi energy in
the center of the pulse. The t is estimated to be smaller than
the polariton dynamics in this case (see analysis in Chang
et al. [12]). For the second part of the process, we adiabatically
ramp up the polariton lattice by slowly modulating the atomic
density as n1 = (n1)0e

βt . The latter approach, followed in
cold-atom physics as well [13], ensures that keeping U/β ≫ 1
is enough to secure a slow sweep. In our case, as we need
to shift (n1)0 = 0.01na to n1 = 0.1na—and correspondingly
U0 = 0.06ER to U = 0.1ER—across the phase diagram in
Fig. 3(b), the above condition translates into an adiabatic
operation time of milliseconds. The latter is smaller than the
reported polariton storage times of seconds [14].

VI. MEASUREMENT

Once the system is driven to the desired regime by tuning γ
and V1/ER, one of the control fields, say "−, is switched off,
mapping the quasistationary polaritons to propagating photons
and releasing the excitations [11]. Any spatial correlations of
the polaritonic states will be mapped to temporal ones on
the outgoing photons, which can be probed using standard
photodetection measurements. The momentum distribution
can be easily constructed by a measurement on the first-order
coherence function g(1)(z,z′) = ⟨Ê(z)Ê†(z′)⟩ and then taking
the Fourier transform [2]. We note here the in situ character

of such a measurement in this optical setup is in contrast
to the usual release and time-of-flight measurement required
in the cold-atom setups. In addition, second-order coherence
measurements on the outgoing photons can be easily made,
revealing the density-density correlations of the states prepared
in the fiber. For the case of the system being in the strong
interaction regime, for example, with a zero lattice potential
as a Luttinger liquid, the first- and second-order correlations
are known and to leading order are [1] g(1) ∼ 1/(z − z′)2K

and g(2) = ⟨n(z)n(z′)⟩
⟨n(z)⟩⟨n(z′)⟩ ≃ n2 + cK

(z−z′)2 + c′ cos(2πn(z−z′))
(z−z′)2K with n =

⟨Ê(z)Ê†(z)⟩, where K as function of γ is given earlier and
c, c′ are constants. We plot these correlations in Fig. 4 for
three different values of γ corresponding to states close to the
horizontal axis of the phase diagram in Fig. 3(a). For small but
finite polariton lattice depths and γ ≫ 1 (left-hand corner of
phase diagram), the photons will be pinned. The correlations
then will exhibit the characteristic behavior of insulating states
with strong antibunching appearing in the g(2) measurements
at distances inversely proportional to the photon density in
the fiber (not shown here). Finally, for the right-hand side, the
phase diagram in Fig. 3(a) (SF part in the BH model), the
general solutions are not known but the usual power law decay
is expected in g(1) accompanied by the relevant bunching of
the photons in g(2).

VII. CONCLUSION

In conclusion, we have shown that different strongly cor-
related states of photons could be created inside hollow-core
fibers interacting with atomic gases with current or near-future
optical technology. The resulting states can be controllably
tuned to reproduce sG and BH many-body dynamics and
also used to probe the corresponding pinning quantum phase
transition predicted by these models. The various correlated
phases can be analyzed by standard optical correlations
measurements on the light exiting the fiber.
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