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Abstract – We present a method for realizing efficiently Grover’s search algorithm in an array
of coupled cavities doped with three-level atoms. We show that by encoding information in the
lowest two ground states of the dopants and through the application of appropriately tuned global
laser fields, the reflection operator needed for the quantum search algorithm can be realized in
a single physical operation. Thus, the time steps in which Grover’s search can be implemented
become equal to the mathematical steps ∼O(

√
N), where N is the size of the register. We study

the robustness of the implementation against errors due to photon loss and fluctuations in the
cavity frequencies and atom-photon coupling constants.

Copyright c⃝ EPLA, 2010

The potential to execute certain types of algorithms
much more efficiently than the corresponding classical
counterparts is one major reason why quantum comput-
ers were initially proposed. To date, several important
quantum algorithms have been invented: the two most
well-known ones being the quantum search and the prime
number factorization [1]. To realize a physical imple-
mentation of a quantum algorithm, it is important that
one can encode the basic units of quantum information,
i.e. the qubits, initialize them to some suitable inputs,
perform an adequate set of unitary operations and then
finally read the output. Many physical implementations
have been proposed and performed based on trapped
ions, cold atoms and solid-state systems [2] with varying
degree of success for realizing few-qubit applications. More
recently, coupled-cavity arrays have been proposed as a
new hybrid light-matter system for quantum simulation
applications. This system was initially studied for condi-
tional photon phase gates [3] and later for Mott transi-
tions [4–6]. Following the initial works, a number of papers
appeared studying the details of the polaritonic many-
body state and simulations of more complex spin models
were proposed [7–16]. More recently driven arrays were
considered towards the production and coherent control of
steady-state entanglement [17] under realistic dissipation

(a)E-mail: cqtesk@nus.edu.sg

parameters. Also, an analogy with Josephson oscillations
was shown and the many-body properties of the driven
array have been recently studied [18].
In the current work we present for the first time a

method for realizing Grover’s search algorithm for an
array of coupled cavities in an efficient way. We start by
noting that the basic Grover iteration is executed in two
steps – first, the oracle O is applied to mark the searched
state by flipping its phase, and then a global reflec-
tion operation about the mean G(W ) = 1− 2|W ⟩⟨W | is
performed, whereW is the N -qubitW state. We will show
that by exploiting the natural evolution of our system we
can implement the reflection operation G(W ) – also known
as a quantum mirror or Householder reflection [19] – in
only one physical step. The quantum reflection, together
with the oracle operation O, comprise the Grover logi-

cal step which is performed ∼O(π
√
N
4 ) times to find

the searched entry. The current techniques for perform-
ing these transformations utilize sequences of single- and
two-qubit gates in order to perform an N -qubit quan-
tum gate [20]. Hence, the number of operations scale as
∼O(N2) with the size of the register. Here, we will exem-
plify how to perform the required N -qubit reflection gate
for the Grover iteration in only one operational step. In
this sense the required physical time steps are significantly
reduced and become equivalent to the number of mathe-

matical steps ∼O(π
√
N
4 ).
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Fig. 1: (Colour on-line) An array of coupled cavities via
hopping photons between neighbouring sites at a rate J doped
with three-level atomic lambda systems.

Consider a linear chain of N cavities fabricated in such
a way that the spatial profile of their cavity modes overlap
and photons can hop between neighbouring sites. Let
each cavity be doped with a three-level atomic system
with a lambda internal energy configuration, as shown
in fig. 1 and let us assume that the N logical qubits,
which we utilize for the quantum register, are encoded in
the ground states |0⟩k and |1⟩k of the individual atoms1.
The |0⟩k↔ |e⟩k transition of each atom is coupled to
the respective cavity mode with coupling strength g and
detuning ∆= ω0−ωc being the difference between the
Bohr transition frequency of the atom ω0 and the cavity
frequency ωc. Additional laser fields drive the |1⟩k↔
|e⟩k transitions with Rabi frequency Ω and are detuned
from the transition frequency again by ∆. The total
Hamiltonian which governs the evolution of the system
consists of three parts – a free energy term, an interaction
term describing the coupling between the atoms and
the respective cavity modes, and a hopping term. Using
the dipole and the rotating-wave approximations, we
can express the system Hamiltonian in an appropriately
chosen interaction picture as

Htotal =
N∑

k=1

ωca
†
kak +J

N∑

k=1

(a†kak+1+H.c.)

+g
N∑

k=1

(e−i∆t|0⟩k⟨e|ka†k +H.c.)

+
1

2
Ω
N∑

k=1

(e−i∆t|1⟩k⟨e|k +H.c.), (1)

where we have adopted the convention != 1. Without loss
of generality we can assume that Ω and g are real, by
including their phases in the atomic and cavity photon
states.
For the one step realization of the Grover search

algorithm we will exploit the single-excitation subspace
and initialize all qubits in their ground states |0⟩k while
populating the lowest energy common photonic mode
with one photon. Hence, the available Hilbert subspace is
(N +1)-dimensional and is spanned by the states |ψn; 0⟩,
1We use the term atoms but this can applied to a variety of

technologies including superconducting qubits, ions or quantum
dots.

(n= 1, . . . , N) and |ψ0; 1⟩. Here, |ψn; 0⟩ labels a collective
atomic state in which the n-th atom is in state |1⟩, all
other atoms are in states |0⟩, and the mode has 0 photons;
while |ψ0; 1⟩ corresponds to all qubits in states |0⟩ and one
photon populating the common mode.
To implement the required operations we exploit the

direct coupling of the logical qubits via the common
cavity photon modes, which we denote as A†j (Aj) and
are obtained through a Fourier transform of the local
modes. Our aim is to achieve a relatively strong coupling
between the logical qubits via the common cavity modes.
We therefore consider a parameter regime in which the
excited atomic states |e⟩k (k= 1, . . . , N) evolve on a much
faster time scale than all other states, J≪Ω, g≪∆. This
allows us to adiabatically eliminate these states from the
dynamics of the system. In this case the Hamiltonian (1)
for qubits coupled to a single common mode A†1 simpli-
fies to

Heff =
N∑

k=1

g′|0⟩k⟨1|kA†1e−i∆
′t+H.c.+ δA†1A1|0⟩k⟨0|k (2)

with effective coupling constants g′ =−gΩ/2∆, and
detuning ∆′ =−Ω2/4∆. Moreover, δ=−g2/(∆− 2J) is
the detuning of the coupling of the qubits to the lowest
energy Bloch mode A†1.
Performing a simple phase transformation the Hamil-

tonian (2) can be rewritten in terms of the collective
atomic states as

Heff =
N∑

k=1

g′|ψk; 0⟩⟨ψ0; 1|+H.c.+(∆′− δ)|ψ0; 1⟩⟨ψ0; 1|.

(3)
Note that the above Hamiltonian describes the interaction
between N degenerate states, corresponding to |ψk; 0⟩,
coupled to one excited state |ψ0; 1⟩ by coupling constants
g′ and detuned by (∆′− δ). We assume that the qubits
are addressed by a global laser pulse which automatically
fulfills the requirements for equal couplings and detunings.
For a system governed by the Hamiltonian from eq. (3)
ref. [21] provides an analytical expression for the prop-
agator U(t, 0) which determines the system’s state at a
moment t according to |Ψ(t)⟩=U(t, 0)|Ψ(0)⟩. In the basis
of the states {|ψn; 0⟩, |ψ0; 1⟩}U(t, 0) is given by

U(t, 0) =
N∑

i̸=j=1

{
δij +(a(t)− 1)

g′2

χ2

}
|ψi; 0⟩⟨ψj ; 0|

+a∗(t)|ψ0; 1⟩⟨ψ0; 1|

+b(t)
N∑

i=1

g′

χ
|ψi; 0⟩⟨ψ0; 1|−H.c. (4)

Here we have introduced the collective atomic Rabi
frequency χ=

√
Ng′. The complex parameters a and b

depend on the interaction between the qubits and the
applied external fields. They can be found analytically
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or numerically for any set of detunings, pulses’ shapes
and amplitudes {∆′− δ, g′}; and obey the relation
|a|2+ |b|2 = 1. Some values of interest of a and b are
analyzed in ref. [21].
Now, we proceed with the execution of the Grover

algorithm. First, we describe the initialization of the
qubits in a |W ⟩=

∑N
n=1 |ψn⟩/

√
N = [1, . . . , 1]T/

√
N state,

which corresponds to an equally weighted superposition of
all states. It can be created in a single physical step just
through the natural time evolution of eq. (4) starting from
|ψ0; 1⟩ and applying a global laser pulse with a hyperbolic-
secant time dependence, a pulse width T and an area of
π, while satisfying ∆′− δ = 0. Hence, the typical width of
this pulse is T = πχ =

π√
Ng′
≃ 10−7 s, for the estimation of

which we have used an experimentally observed individual
coupling strength g≃ 105MHz from ref. [22] and we have
assumed that Ω∼ g and ∆∼ 10g. For this interaction step
the parameter a= 0 and the state of the system thereafter
is given by |Ψ⟩=

∑N
i=1 g

′|ψi; 0⟩/χ.
After that we continue with the description of the
implementation of the Grover iteration. Mathematically,
the Grover logical operation consists of two steps – a
local oracle operation O which marks the searched state
by flipping its phase and a global reflection about the
mean. Once we have prepared the required N qubit |W ⟩
state the oracle operation O can be easily implemented
by a local laser pulse, addressing only the searched qubit,
with a pulse area of 2π. The resulting state of the system
is then evolved according to the propagator given in
eq. (4) as we apply a consequent global pulse, addressing
all qubits, in order to realize the Householder reflection.
It is again assumed to have a hyperbolic-secant shape and
an area of 2π (hence, the individual qubits experience
pulse areas of 2π/

√
N) which effectively implements a 2π

rotation between the states
∑N
i=1 |ψi; 0⟩↔ |ψ0; 1⟩. Then,

the parameter a=−1 and the propagator for the N
degenerate states (4), comprising the database of the
system, becomes

G(W ) = 1− 2|W ⟩⟨W |, (5)

which is the N -dimensional Householder reflection opera-
tor about the mean [23]. Here, the normalized reflection
vector |W ⟩= 1√

N
[1, 1, . . . , 1]T is the N qubit |W ⟩ state.

Hence, in a single physical step we can realize in the regis-
ter’s subspace the basic ingredient for Grover’s algorithm
just by tuning accordingly the interaction parameters of
the system. Moreover, it has been shown [24] that any
desired N -qubit unitary operation can be realized as a
sequence of reflection operations (5) in a number of steps
∼O(N), which is an improvement compared to methods
based on, for example, sequences of two-dimensional rota-
tions [20]. The Grover logical step G(W )O is successive
executed π

√
N/4 times on the register which drives the

system into the marked state.
The third final step in the search algorithm is the
detection. The marked qubit is the only one in state
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Fig. 2: (Colour on-line) Numerical simulation of the population
of the searched state for the probabilistic Grover search
implemented in an array consisting of N = 8 coupled cavities.
The system is initially prepared in an eight-qubit W state
through the application of a single global pulse with an area
of π. After the application of two Grover iterations each
comprising an oracle operation (implemented by a local laser
pulse of area 2π) and a global reflection about the mean
(realized with a global pulse of area 2π and) the fidelity of
the state approaches unity. After that it starts to decrease
and shows oscillatory behaviour. The sharp disturbances of the
plotted curve at 15T , 75T and 135T indicate the application of
the oracle operations while the distinct increases (decreases) at
45T , 105T and 165T show the global laser pulses which were
chosen to have sech time dependence and a pulse area of 2π.

|1⟩ while all others are in state |0⟩. This can be easily
probed by employing usual atomic state measurement
techniques [25]. In fig. 2 a numerical calculation of the
fidelity of the preselected state is plotted as a function of
time for an array consisting of N = 8 cavities. After the
application of two Grover iterations, i.e. two oracle calls
and two global reflections, almost all population is driven
into the marked state, with fidelity 0.98%. Then, it starts
to decrease as a part of oscillations between zero and one.
In an experimental setup in addition to the conditions
J≪Ω, g≪∆ we also need to assume that the cavity
leakage time is smaller than the time required to
implement the logical/physical steps. In our case this
translates to χ< γcav, i.e., close to strong-coupling
regime which corresponds to single-cavity cooperativity

parameter C = g2

Γγcav
≫ 1, where Γ is the spontaneous

emission rate of the atom. In addition cavities need to be
efficiently coupled to each other, i.e. J ! γcav.
There are three main potential technologies for the

experimental implementation of coupled-cavity arrays:
fiber-coupled microtoroidal cavities [26], arrays of defects
in photonic crystals [27] and superconducting qubits
coupled via microwave stripline resonators [28]. Micro-
toroidal cavities are routinely produced in large arrays
and can have high Q-factors [29]. The cavities are coupled
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via tapered optical fibers which are placed close to the
surface of the cavities and whose evanescent fields over-
lap thus allowing for photons to hop between neighbour-
ing sites. The photon tunneling rate can be controlled by
adjusting the distance between cavity and fiber. More-
over, these cavities can be made to interact with atoms
in the strong-coupling regime and single-cavity cooper-
ativity parameters of C ∼ 50 have already been demon-
strated in an experiment [30]. Some of the challenges
for the realization of the effective Hamiltonian given by
eq. (1) using toroidal microcavities is that all the cavities
of the array should be coupled and tuned into resonance
with each other.
Another promising candidate for implementing arrays

of coupled cavities are atoms coupled to photonic band
gap defect nanocavities. So far, large arrays of coupled
cavities have been produced [31] where photon hopping
has been observed. Atomic impurities can be created
inside these nanocavities and due to the cavities’ small
volume the interaction between the atom and the cavity
is in the strong-coupling regime with very large coupling
constants [32] and single-cavity cooperativity parameters
up to C ∼ 10. Spontaneous emission rates can be made
small; however, cavity decay rates of photonic band gap
cavities remain a limiting factor for the implementation of
the dynamics of eq. (1).
Coupling of two cavity QED systems formed by a

Cooper-pair box coupled to a superconducting stripline
resonator has not been achieved in an experiment yet,
however, these systems possess some advantages that
make them a possible platform for the implementation of
the Hamiltonian (1). Strong coupling between the Cooper-
pair box and the stripline resonator has been observed and
very large single-cavity cooperativity parameters C ∼ 104
have been achieved already [33]. Moreover, two Cooper-
pair boxes have been strongly coupled to the cavity
mode [22,34] and theoretical investigations suggest that
their number can be increased up to ten. These experimen-
tal results, combined with efficient cavity-cavity coupling
make the circuit QED system a promising platform for the
realization of the proposed algorithm.
In order to check the robustness of our protocol against

possible experimental errors we have considered an array
of 8 coupled microtoroidal cavities and have allowed for
realistic inaccuracies in the resonant frequency of the
cavities ωc. Another aspect which remains challenging and
has the potential to reduce the fidelity of the protocol is
the positioning of the atoms such that they all experience
equal coupling constants. To estimate the influence of
these errors we have performed a numerical simulation of
the fidelity of the marked state as a function of a static
deviation from the desired equal value of the effective
coupling constants experienced by the individual qubits
g′. For the simulation shown in fig. 3 we have assumed a
global pulse tuned on∆′ = δ with a hyperbolic-secant time
dependence and a pulse area of 2π. Our calculations show
that the marked element is successfully recovered with a
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Fig. 3: (Colour on-line) Numerically calculated maximum
fidelity of the marked state plotted against the random mean
deviation of the different coupling constants g′i in units of 10%.

probability of more than 70% even when the deviations
are of the order of 30%. This fidelity translates into
success probability of about 20% for a single step, which
is comparable with the perfect classical search algorithm
which has a maximum average success rate of 25% for
a single step. The error bars, however, increase rapidly
when the mean fluctuations of the couplings are around
20% but for smaller values they are of the order of few
percents. This shows that we can achieve high fidelity with
a relatively realistic system which can be crucial for the
experimental implementation of the search algorithm.
In conclusion we showed how symmetric cavity-qubit

couplings can be used to implement a robust and efficient
quantum search algorithm in a linear chain of N coupled-
cavities doped with atoms whose hyperfine states are used
to encode the logical qubits. The algorithm is implemented
by employing global laser fields in such a way that the
number of the required physical steps become equal to
the number of logical steps, i.e., ∼O(

√
N). This is an

advantage compared to other implementations which in
addition to these query steps require many more physical
non-query steps. We achieve the speed up with regard to
physical steps by using the natural evolution of the system,
which already implements the global reflection operation
required by the algorithm. We also allow for realistic
deviations from the symmetric cavity-qubit couplings that
can arise in an experimental setup and find that our
proposal is quite robust against such imperfections.
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P. J., Steffen L., Blais A. and Wallraff A., Phys.
Scr., T137 (2009) 014013.
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