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Abstract – We show that coherent control of the steady-state long-distance entanglement between
pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible.
The cavities are doped with atoms and are connected through waveguides, other cavities or
fibers depending on the implementation. We find that the steady-state entanglement can be
coherently controlled through the tuning of the phase difference between the driving fields. It can
also be surprisingly high in spite of the pumps being classical fields. For some implementations
where the connecting element can be a fiber, long-distance steady-state quantum correlations
can be established. Furthermore, the maximal of entanglement for any pair is achieved when
their corresponding direct coupling is much smaller than their individual couplings to the third
party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled
atomic levels using classical coherent fields. We suggest a method to measure this entanglement
by analyzing the correlations of the emitted photons from the array and also analyze the above
results for a range of values of the system parameters, different network geometries and possible
implementation technologies.

Copyright c⃝ EPLA, 2010

Coupled-cavity arrays have recently been proposed as
a new system for realizing schemes for quantum compu-
tation [1] and for simulations of quantum many-body
systems [2]. More recently driven arrays were consid-
ered towards the production of steady-state polaritonic [3]
and membrane entanglement [4] under realistic dissipation
parameters. Also, an analogy with Josephson oscillations
was shown and the many-body properties of the driven
array have been recently studied [5].
In this work we examine for the first time the possibility

of achieving coherent control of the steady-state entangle-
ment between mixed light-matter excitations (polaritons)
generated in macroscopically separated atom-cavity
systems. We show explicitly that for a three-pumped-
cavity setup, which could be realizable in a variety of
cavity QED technologies including photonic crystals,
circuit QED, toroidal cavities connected through fibers

(a)E-mail: dimitris.angelakis@googlemail.com

and coupled defect cavities interacting with quantum
dots [6,7], such control is possible (see fig. 1). Light from
the connecting waveguides/fibers can directly couple to
the photonic modes of the atom-cavity systems through
tunneling or evanescent coupling. In each atom-cavity
site we assume the interaction and the corresponding
nonlinearity to be strong enough to so that either zero or
maximally one polariton can be excited1.

1There are several ways to form polaritons through atom-photon
interactions. For instance, a two-level atom interacting with cavity
photons can exihibit a nonlinear energy spectrum and in the photon-
blockade regime only the lowest two levels need to be considered
which form the two levels for excitations of polaritons. The ground
state of the polariton is |g, 0⟩ and the excited state is the lowest
dressed state (|e, 0⟩− |g, 1⟩/)

√
2. These two states on resonance are

separated by ωpol = ω0− g with ω0 the frequency of the uncoupled
atomic levels/photon and g the atom-photon coupling strength.
There can also be alternatives involving 4-level atoms in each cavity
interacting with the photon through the usual Jaynes-Cummings
interaction. See also, refs. [8,9]. In the above regime if one calculates
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Fig. 1: (Color online) Schematic representation of a three inter-
acting cavity-atom systems (S1, S2, S3) setup based on a possi-
ble implementation using photonic crystals (for illustration
purposes only): the connecting waveguides carrying the driving
classical fields with phases φ1, φ2, φ3 are replaced by fibers
or stripline microresonators for different implementations [6,7].
The three waveguides and three driving fields are labeled with
the same indices to the phases φ1, φ2, φ3.

The Hamiltonian describing the system written in the
rotating frame of the driving lasers is

H =
3∑

i=1

((ωc,i−ωd)a†iai+(ωp,i−ωd)P
†
i Pi)

+
3∑

i=1

Ji(a
†
i (Pi+Pi+1)+ ai(P

†
i +P

†
i+1))

+
3∑

i=1

(αie
iφia†i +αie

−iφiai), (1)

where the first line is the free Hamiltonian of the
waveguides and cavities, with a†i , ai the field operators

of the single-mode waveguides. P †i (Pi) are the operators
describing the creation (annihilation) of a mixed atom-
photon excitation (polariton) at the i-th cavity-atom
system (P4 ! P1) (see footnote 1). The second line
describes couplings between cavities and waveguides, with
ωc,i, ωp,i and ωd the frequencies of the i-th waveguide
mode, the polariton in i-th cavity and the driving fields
respectively, and Ji is the coupling strength between the
photon mode in the i-th waveguide and the adjacent two
polaritons. The third line describes the classical driving of
the waveguides, where αi is proportional to the amplitude
of the i-th driving field with φi being its phase.
The polaritons and waveguide modes are assumed to

decay with rates γ and κ, respectively. The master equa-
tion for the polaritonic density matrix, after tracing out
the degree of freedom of the waveguide photons 1,2 is

ρ̇ = −i[Heff , ρ] +
3∑

i=1

(Γi−1zi−1+Γizi)F
P
i,iρ

+
3∑

i=1

Γi(F
P
i,i+1ρ+F

P
i+1,iρ) , (2)

the commutator between the polaritons, a mixed relation will be
found which only in the limit of large detunings and/or small
couplings leads to a bosonic one. This is the limit where the
polaritons are mostly comprised of photons.
2Here, we assume weak pumps: αi ! Ji≪ κ. The method for

tracing out the degree of freedom of waveguide modes is similar to
the one in ref. [3].

with Heff =
∑3
i=1(ΓiyiP

†
i Pi+1+Γixi(P

†
i +P

†
i+1))+h.c.,

where h.c. denotes the Hermitian conjugation of its previ-
ous summation. FPi,j(ρ) = 2PiρP

†
j −P

†
i Pjρ− ρP

†
i Pj , Γi =

J2i κ/(κ
2+∆2i ), xi = αie

iφi(∆i− iκ)/(Jiκ), yi =∆i/κ,
∆i = ωc,i− (ωp,i+ωp,i+1)/2, ωp,4 ! ωp,0, zi = 1+ γ/(2Γi),
Γ0 ! Γ3 and z0 ! z3. It can be seen from eq. (2) that the
couplings and detunings between the waveguide and its
adjacent two polaritons induce an effective interaction
between them given by Γiyi (see Heff). The driving on
the waveguides is equivalently transferred to the driving
on the polaritons (Γixi in Heff), which decay with rates
Γi−1zi−1+Γizi = Γi−1+Γi+ γ. Since Γi is related to
κ, the polaritons effectively have two channels of decay.
They decay directly to the outside with γ and also
through the coupling Ji−1 or Ji (J0 ! J3) to the adjacent
two leaky waveguides (who also decay by κ). Note that
the second channel also mixes the polaritons’ operators,
as can be seen in the second line of eq. (2). This mixing is
actually an essential factor for the entanglement creation
among polaritons (the other two essential factors are the
interactions among polaritons and the driving on them).
We can now derive the steady state ρss by requiring that
˙ρss = 0 in eq. (2). This is done numerically due to the large
number of coupled equations involved (see footnote 1).
Next, for a total three-polariton density matrix, we trace
out the polaritonic degree of freedom of cavity 1 and
calculate the polaritonic entanglement between cavity 2
and 3 using the concurrence as a measure. The concur-
rence of a two-qubit density matrix ρ is defined [10] as
max{0,λ1−λ2−λ3−λ4}, where λi’s are, in decreasing
order, the nonnegative square roots of the moduli of the
eigenvalues of ρ · ρ̃ with ρ̃= (σy1 ⊗σ

y
2 ) · ρ∗ · (σ

y
1 ⊗σ

y
2 ) and

ρ∗ is the complex conjugate of ρ. The concurrence C(ρss)
is effectively a function of the parameters xi , yi and
zi. We perform a numerical optimization of C(ρss) by
varying these parameters and find that C(ρss) is larger
when Γ2≪ Γ1 = Γ3. For instance, if we assume ∆1 =∆2 =
∆3 = 1.5× 1014Hz and κ= 1013Hz, the maximum concur-
rence can reach 0.402 at x1 =−x3 = 1.82, x2 = 0, y1 = y2 =
y3 = 15, z1 = z3 = 1.113, and z2 = 114. These correspond
to field amplitudes α̃1 = α̃3 = 1.215× 103, and couplings
G1 =−G3 = 1.0× 108Hz, G2 = α̃2 = 0, (αi =Giα̃i), φ1 =
0, φ3 = π, γ = 108Hz, J1 = J3 = 1.0× 1012Hz, J2 = 3.16×
1010Hz. The effective dissipation rates appearing in the
initial master equation (eq. (2)) are Γ1 = Γ3 = 4.42×
108Hz and Γ2 = 4.41× 105Hz. These values are consis-
tent with the parameters used in current or near-future
technologies [6,7]. Figure 2 shows a plot of the maximum
possible concurrence for the polaritonic entanglement of
cavity 2 and cavity 3 when the ratio between x1 and x3 is
varied, with Γ1 = Γ3, Γ2 = 10−3Γ1, y1 = y3 = 15, z1 = z3 =
1.01 and z2 = 11. Note that since Γ2≪ Γ1 = Γ3, the vari-
ation of x2 and y2 does not significantly change the value
of the concurrence. It can be seen in fig. 2 that C(ρss), in
the case when x1 and x3 have opposite signs, is larger than
when they have the same signs. C(ρss) reaches a maximum
of 0.417 when x3 =−x1, i.e. the first and third driving
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Fig. 2: (Color online) Polar plot r(θ) of the maximum possible
concurrence as the ratio of x1 and x3 is varied (fix y1 = y3 =
15). r=C(ρss), tgθ=

x3
x1
and sign(x1) = sign (cos θ). The insets

(1)–(4) are the 3D plots of C(ρss) as a function of x1 and y1
(= y3) with

x3
x1
fixed to be −1, 1, 0.5, −0.5, respectively.

fields have equal intensity but opposite phases. We also
note here that the relation Γ2≪ Γ1 = Γ3 indicates that
the coupling between the two cavities in question is much
weaker than the coupling between each one and the third
cavity. Also the state of the polariton in cavity 1 for the
maximum entanglement point is found to be almost a pure
state at ground energy level and therefore almost uncorre-
lated to the polaritons in cavities 2 and 3. Thus, the total
density matrix ρ≈ |ground⟩⟨ground|⊗ ρ2,3. Although this
result initially looks counter-intuitive, it can be explained
as follows: the maximum entanglement between the two
parties, i.e. cavities 2 and 3, in a three-party system, is
attained when the state of the third party, i.e. cavity 1,
nearly factorizes in the combined three-party state. The
fact that this is happening for strong relative couplings
of J12 ≡ J1 and J13 ≡ J3 compared to J23 ≡ J2 is reminis-
cent of the behavior of a coherent process taking place.
One could dare to observe an analogy here with the case
of coherently superposing two initially uncoupled ground
states in a Λ-type quantum system through an excited
state using two classical fields to mediate the interac-
tion [8,9].
The last observation is further justified by observing

that C(ρss) is larger when the first and third driving fields
have opposite phases. In fig. 3 we plot C(ρss) against the
phases of driving fields with z1 = z3 = 1.01 and z2 = 11.
When the phase difference is φ1−φ3 = (2k+1)π (k is an
integer), we get again a maximum of 0.417. For general
phase relations, an oscillatory behavior characteristic of
the expected coherent effect takes place. In simple words,

Fig. 3: (Color online) The concurrence between the polaritons
in cavity 2 and cavity 3 as a function of φ1 and φ3. x1 =
1.67eiφ1 , x3 = 1.67e

iφ3 . When φ1−φ3 = (2k+1)π (k is an
integer), the concurrence reaches a maximum of 0.417. The
upper left figure is the sectional view at φ3 = 0.

1 2 3

S1 S2

Fig. 4: (Color online) Schematic diagram of the two cavity-
atom systems in which there are three waveguides carrying the
three respective classical laser fields. Note that each waveguide
carrying classical fields can also be replaced by fibers or
stripline microresonators for implementation technologies [7].

when the two fields are completely out of phase the
entanglement is maximized whereas at phase difference
π/2, the two polaritons are completely disentangled. In all
other cases, the amount of entanglement lies somewhere
in between.
In fig. 4, we study the case of three waveguides coupled

to two cavity-atom systems. Here we analyze the polari-
tonic entanglement between cavity 2 and 3 (relabeled as
S1 and S2 in fig. 4). The optimization of this entanglement
gives similar values of the parameters like the ones used
above except that the values for Γi are reversed, i.e. Γ2≫
Γ1 = Γ3; however, the concurrence can reach a maximum
of 0.47. Again the dependence φ1−φ3 = (2k+1)π (k is an
integer) is apparent (see fig. 5). However, if we compare
the insets in fig. 3 and fig. 5 for the cross-sectional plots
of the concurrence for φ3 = 0, we see that the plot in fig. 3
has a narrower peak whereas the plot in fig. 5 is broader.
This implies that the maximum concurrence for configura-
tion in fig. 4 is substantially more stable against variation
in the phases φ1 and φ3 than that in fig. 1.
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Fig. 5: (Color online) The concurrence between two cavities
(fig. 4) as a function of φ1 and φ3. x2 = y2 = 0, x1 = 5e

iφ1 , x3 =
5eiφ3 , Γ1 = Γ3 = 1.316× 108 and Γ2 = 1010. When φ1−φ3 =
(2k+1)π (k is an integer), the concurrence reaches a maximum
of 0.470. The upper left figure is the sectional view at φ3 = 0.

At this juncture, it is worth emphasizing that we
now have three different configurations for comparisons:
i) two cavities with a single driven waveguide in ref. [3];
ii) two cavities with three driven waveguides as in fig. 4;
iii) three cavities with three driven waveguides as in fig. 1.
The numerical optimization involving more than three
doped-defect cavities does not seem to increase the polari-
tonic entanglement between any two cavities. Therefore,
the above three configurations should be optimal for two-
qubit entanglement, corresponding to different values of
the dissipation rates parametrized in z. As shown in fig. 6,
when z ranges from 1 to 1.221, the maximum concurrence
for configuration ii) decreases rapidly from 0.48 to 0.285.
This rapid decrease indicates that although configuration
ii) can reach higher entanglement than configuration i),
yet it is more fragile to the dissipation of the environment
(parametrized by γ in z). In comparison, the three-cavity
setup is more robust against the increase of dissipation
(only when z " 4.03, its maximum concurrence drops to
be the same to that for configuration i)). Therefore, we
conclude that cavity 1 in fig. 1 not only coherently medi-
ates between cavities 2 and 3, but it also stabilizes the
amount of entanglement between the two cavities.
One could try to employ entanglement witnesses

to detect this entanglement [11]. A witness could be
constructed from the density matrix corresponding to
the maximum value of the concurrence [3] and one
could measure the witness along the corresponding spin
directions. In coupled-cavity systems to implement the
necessary effective spin measurements we can use the
usual atomic state measurement techniques employing
an external laser tuned to the corresponding polaritonic
levels [5] (see footnote 1). In these measurements the
correlations between the polaritons are transferred to

1 2 3 4 5
z

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
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ss

1.221 , 0.285 4.034 , 0.235

1.053 , 0.414

Two doped cavities
with one driving field

Two doped cavities
with three driving fields

Three doped cavities
with three driving fields

Fig. 6: (Color online) The maximum concurrence vs. z in three
configurations: i) two cavities with a single driven waveguide
in ref. [3]; ii) two cavities with three driven waveguides as in
fig. 4; iii), three cavities with three driven waveguides as in
fig. 1 (z1 = z3 = z, z2 = 10

3(z1− 1)+1). The solid/dashed line
is for configuration i)/ii) when 1< z < 1.221. The dash-dotted
line is for configuration iii) when 1< z < 4.034. The double-
dot–dashed line is for configurations i) and ii) when 1.221<
z < 4.034. The dotted line is for all the three configurations
when z > 4.034.
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Fig. 7: (Color online) (The cross-correlation coefficient
⟨P†2P2P

†
3P3⟩

⟨P†2P2⟩⟨P
†
3P3⟩

for the three-cavity scheme: the minimum value

in the cross-correlation coefficient corresponds to maximum
concurrence between the cavities.

emitted photons and can thus be detected by analyzing
the fluorescent photon spectrum. In the following we

plot the cross-correlation coefficient ⟨P †2P2P
†
3P3⟩

⟨P †2P2⟩⟨P
†
3P3⟩

for the

three-cavity scheme in fig. 1 as a function of the phase
difference between the driving fields 1 and 3 (fig. 7). The
plot is consistent with the concurrence plot in fig. 3.
What we observe is that when the polaritons are highly
entangled the emitted photons come in bunches from
each polariton emitter (we note here that the polaritons
are continuously pumped).
In this work, we have shown that the long-distance

steady-state entanglement in a lossy network of driven
light-matter systems can be coherently controlled through
the tuning of the phase difference between the driving
fields. This entanglement could be measured by analyzing
the spectrum of the photons emitted from the cavities.
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We also found that there exist two optimal setups for
generating the maximum available entanglement between
two coupled-cavity systems depending on the level of dissi-
pation in the system. Finally, surprisingly enough, in a
closed network of three-cavity-atom systems the maximum
of entanglement for any pair is achieved even when their
corresponding direct coupling is much smaller than their
couplings to the third party. This effect is reminiscent
of coherent effects found in quantum optics that coher-
ent population transfers between otherwise uncoupled
levels through a third level using two classical coherent
fields.
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