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Abstract – We study the case of two polaritonic qubits localized in two separate cavities coupled
by a fiber/additional cavity. We show that classical driving of the intermediate cavity/fiber can lead
to the creation of entanglement between the two ends in the steady state. The stationary nature
of this entanglement and its survival under dissipation opens possibilities for its production under
realistic laboratory conditions. To facilitate the verification of the entanglement in an experiment
we also construct the relevant entanglement witness measurable by accessing only a few local
variables of each polaritonic qubit.

Copyright c⃝ EPLA, 2009

Introduction. – Recently, there has been a growing
interest in exploiting a certain class of coupled hybrid
light-matter systems, namely coupled cavity polaritonic
systems, for various purposes such as for realizing schemes
for quantum computation [1,2], for communication [3] and
for simulations of quantum many-body systems [4–11].
These cavity-atom polaritonic excitations are different
from propagating polaritonic excitations in atomic gases
and exciton-photon polaritons in solid-state systems [12].
This area is also distinct from those using hybrid light-
matter systems in quantum computing where only the
matter system (such as an atom or an electron) acts as
the qubit. In the latter case the qubits are atoms and
light is used exclusively as a connection bus between
them [13–19]. In this context there have been promising
schemes to produce steady-state entanglement between
atoms in distinct cavities [19]. In these proposals, ground
states of atoms have been used as the two states of a qubit
in order to circumvent decoherence due to spontaneous
emission. Additionally, auxiliary atomic levels, external
driving fields and an unidirectional coupling between the
cavities are required. In polaritonic coupled cavity systems
on the other hand, the localized mixed light-matter exci-
tations, or polaritons, allow for the identification of qubits
that possess the easy manipulability and measurability of

(a)E-mail: dimitris.angelakis@gmail.com

atomic qubits, while also being able to naturally interact
whereas separated by distances over which photons can be
exchanged between them. Motivated by the rapid exper-
imental progress in Cavity Quantum Electrodynamics
and the ability to couple distinct cavities in a variety of
systems [20–24], the realization of a system that could
produce verifiable, steady-state entanglement between
two polaritonic qubits in realistic laboratory conditions
would be extremely interesting. Here the challenge is
the fact that decoherence emerges from both photonic
losses and atomic spontaneous emission due to the mixed
nature of the polaritons. Typically, the polaritons would
decay to their ground states. Therefore, a priori, one may
not expect a completely stationary entanglement of two
polaritons unless the unavoidable loss of coherence due
to both photonic and atomic decays can somehow be
“re-injected” into the system.
Here we show that even under dissipation in both

the atomic and photonic parts, it is still possible to
deterministically entangle two such polaritonic qubits.
More precisely, we study the case of two polaritonic
qubits coupled by a fiber/additional cavity and show that
a classical driving can lead to the creation of entangle-
ment between them in the steady state. The stationary
nature of this entanglement should make its experimental
verification easier. To this end, we also provide a relevant
operator (an “entanglement witness” [25]) measurable by
only measuring local variables of each polariton.
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The model. – The Hamiltonian describing an array
of N identical atom-cavity systems is the sum of the free
light and dopant parts and the internal photon and dopant
couplings

Hfree = ωd

N∑

k=1

a†kak +ω0

N∑

k=1

|e⟩k⟨e|, (1)

Hint = g
N∑

k=1

(a†k |g⟩k⟨e|+ ak|e⟩k⟨g|). (2)

Here ak, a
†
k are the photonic field operators localized in

the k-th system and |e⟩k, |g⟩k are the excited and ground
state of the dopant in the k-th system. Moreover, g is the
light-atom coupling strength and ωd (ω0) the photonic
(atomic) frequencies (!= 1 throughout the paper). The
Hfree+Hint Hamiltonian can be diagonalized in a
basis of mixed photonic and atomic excitations, called
polaritons. On resonance between atom and cavity, the

polaritons are created by operators P (±,n)†k = |n±⟩k⟨g, 0 |.
The states |n±⟩k = (|g, n⟩k ± |e, n− 1⟩k)/

√
2 are the

polaritonic states (also known as dressed states) with
energies E±n = nωd± g

√
n and |n⟩k denotes the n-photon

Fock state of the k-th cavity.
It has been shown that in an array of these atom-

cavity systems the addition of a hopping photon term

∝
∑
j(a
†
jaj+1+ aja

†
j+1) leads to a polaritonic Mott phase

where a maximum of one excitation per site is allowed [5].
This originates from the repulsion due to the photon
blockade effect [21]. In this Mott phase, the system’s
Hamiltonian in the interaction picture results

HI = J
∑

k

(
P
(−,1)†
k P

(−,1)
k+1 +P

(−,1)
k P

(−,1)†
k+1

)
, (3)

where J is the coupling due to photon hopping from cavity
to cavity. Since double or more occupancy of the sites is

prohibited, one can identify P (−,1)†k with σ†k = σ
x
k + iσ

y
k ,

where σxk , σ
y
k and σ

z
k stand for the usual Pauli operators.

The system’s Hamiltonian then becomes the standard
XY model of interacting spin qubits with spin up/down
corresponding to the presence/absence of a polariton [5].
Let us now consider a linear chain of three coupled

cavities with the two extremal ones doped with a two
level system as shown in fig. 1(a). Alternatively, as the
central cavity in any case is undoped, one can replace it
with an optical fiber of short length (so that the distance
is greatly increased but the fiber still supports a single
mode of frequency near those of the two cavities), which
simplifies the setting even further, as shown in fig. 1(b).
For the purposes of description, we will use the three-
cavity setting remembering that everything applies to the
case of two cavities linked by a fiber. The fact that a
classical field can drive (i.e., pump energy into) the central
cavity in a three-cavity setting (as also shown in fig. 1(a))
is replaced in the fiber setting by a coupler feeding light
into the cavity (as also shown in fig. 1(b)).

Fig. 1: The system under consideration. a) The cavities
are coupled through direct photon hopping. b) The cavities
are coupled through a fiber. The extremal cavities in each
configuration are interacting with a two-level system that could
be an atom or a quantum dot depending the implementation
technology used. c) The photon blockade allows for the ground
and first dressed states of each atom-cavity system to be
treated as a (polaritonic) qubit.

Here it may be worthwhile to emphasize that the above
setup and our requirements (e.g., pumping the central
cavity) are within current technology. Coupled cavities
is a generic system which has, by now, been realized in
a variety of experiments ranging from toroidal cavities
connected by fibers [22] to fiber coupled cavities on
chips [24] to microwave stripline cavities which can couple
to each other [26]. In a recent experiment of Bose-Einstein
Condensates on chips, cavities where realized by ends of
fibers and other cavities to which they can be coupled
in the near future where already present on the same
chip [27]. In the case when we have a cavity in the middle,
light can be fed into the central cavity using different
techniques for the various technologies.
For example, for the toroidal case, fibers coming in

from any direction tangential to the toroid can couple
to the evanescent mode circulating the cavity. So an
extra fiber can come in from a direction distinct from
the fibers which are coupling this cavity to the other
cavities and still couple to the relevant cavity mode.
For Fabry-Perot cavities, if an input fiber comes in a
sufficiently inclined direction (nearly parallel to the axis
connecting the mirrors), then some of the light will
eventually couple into the cavity mode. One can also
have a highly off resonant scatter such as single or
multiple atoms in the central cavity which couple light
coming from any direction into the cavity mode, but
do not take a relevant role in the Hamiltonian (apart
from pumping the central cavity with classical light).
For microwave stripline resonators, cases of fig. 1(a) and
(b) are indistinguishable because the geometry of the
cavities themselves are elongated. Light can be fed in here
through a transmission line coming in from a direction
perpendicular to the central resonator. When a connecting
optical fiber replaces the central cavity (fig. 1(b)) and one
needs to feed it in with coherent radiation, one can simply

20007-p2



Steady-state entanglement between hybrid light-matter qubits

use another fiber to feed in the radiation which is “tunnel
coupled” with the connecting fiber [28]. Indeed there are
several technologies in existence which can couple one fiber
to another so that the field in one can be fed into the other,
such as optically coupled optical fibers [29]. This input
channel, will, of course, also provide a decay channel for
the connecting fiber and in this sense it is equivalent to a
central cavity with a certain decay rate.
Let σ†j = |1−⟩j⟨g, 0| be the polaritonic spin operators

for the end cavities (the index j = 1, 2 labels the two end
cavities) and a, a† the field operators of the empty central
cavity. Since the latter is not doped, there the field oper-
ators play the role of polariton operators and they couple
to polariton operators of the end cavities. Moreover,
assuming that the central cavity (or fiber) is driven, the
Hamiltonian describing the system dynamics will be

H =Ha+Hp+J
(
Sa†+S†a

)
, (4)

where
Ha = (∆− δ) a†a, (5)

Hp =−δ (σz1 +σz2) , (6)

S =
(
σ1+σ2+

α

J

)
. (7)

Here ∆= ωcav −ωpol is the detuning between the central-
cavity mode of frequency ωcav and the polaritonic
frequency ωpol = ω0− g. Furthermore, δ= ωdri−ωpol is
the detuning between the driving field (of the central
cavity) of frequency ωdriv and the polaritonic frequency
ωpol = ω0− g. Finally, α (hereafter assumed real for the
sake of simplicity) is the product of the coupling of
the driving field to the central-cavity field (say G) and
the amplitude of the driving radiation field (say α̃).
We also assume that ∆ is much smaller than the atom-
light coupling in each of the outer cavities, so that
only the ground level |g̃⟩= |g, 0⟩ and first excited level
|ẽ⟩= (|g, 1⟩− |e, 0⟩)/

√
2 of the polaritons are involved

(i.e., the polaritons are still good as qubits).
Suppose that the polaritons decay with the same rate
γ (this is the effective decay rate of the polariton due to
both the decay of the cavity field and the atomic excited
state), and the cavity radiation mode with rate κ. Then,
the master equation describing the dynamics of the whole
system density operator R will be

Ṙ=La (R)+Lp (R)+LJ (R) (8)

with the Liouville superoperators

La (R) =−i [Ha, R] +L′a (R) , (9)

Lp (R) =−i [Hp, R] +L′p(R), (10)

LJ (R) =−iJ
[(
S†a+Sa†

)
, R
]
. (11)

Here L′a and L
′
p describe the damping of the radiation

mode and the polaritons respectively

L′a (R) = κ
(
2aRa†− a†aR−Ra†a

)
, (12)

L′p (R) = γ
(
2σ1Rσ

†
1−σ

†
1σ1R−Rσ

†
1σ1
)

+γ
(
2σ2Rσ

†
2−σ

†
2σ2R−Rσ

†
2σ2
)
. (13)

We are going to consider the interaction term J(Sa†+
S†a) as a perturbation and expand the master equation (8)
in terms of it. To do so, we cannot consider α increas-
ing at will, but rather α/J ! 1. Then, in the decoupled
limit J→ 0 the cavity field evolves independently of the
polaritons. On a timescale κ−1 the system relaxes into
the state R(t)≈ rss⊗ ρ(t), with rss the cavity equilibrium
density operator defined by La(rss) = 0, and the polariton
operator ρ(t) evolving under the action of Lp. For a finite
coupling J≪ κ deviations from the factorized form of R(t)
are small, but the coupling term LJ modifies the dynam-
ics of ρ(t). To proceed we adopt a projection operator
technique (see, e.g., [30]) and define the projector PR=
rss⊗Tra{R} and its orthogonal complement Q= (1−P).
Inserting the decomposition R(t) =PR(t)+QR(t) into
eq. (8), we obtain two coupled equations:

PṘ(t) =PLpPR(t)+PLJQR(t), (14)

QṘ(t) =Q(La+Lp+LJ)QR(t)+QLJPR(t). (15)

As the population in the subspace QR is damped with
a rate κ which is fast compared to the coupling term
QLJP∼ J , we formally integrate eq. (15), insert the result
into eq. (14) and expand the final expression up to second
order in J . For times t≫ κ−1 we end up with an effective
master equation for the polariton density operator ρ(t) =
Tra{PR(t)} which is given by

ρ̇(t) =−i[Hp, ρ(t)]

+

∫ ∞

0
dτ Tra{LJQe(La+Lp)τQLJe−Lpτ (rss⊗ ρ(t))}.

(16)

The second term in eq. (16) describes the effect of the
cavity on the polaritonic dynamics. We evaluate this term
by inserting the definitions of La, Lp and LJ given in
eqs. (9)–(11) and obtain an effective master equation of
the form

ρ̇=−i[Hp, ρ] +J
(
TρS†−S†Tρ+SρT †− ρT †S

)
. (17)

Here we have introduced

T =

∫ ∞

0
dτ e−i(∆−δ)τ e−κτ S(−τ), (18)

with S(t) = eiHptSe−iHpt. In the infinite-bandwidth limit,
where κ is large compared to δ, eq. (18) reduces to the
simple form T = S/(κ− i∆). Thus the effective master
equation for polaritons becomes

ρ̇ = −i [Hp, ρ] +
J2

κ− i∆
(
SρS†−S†Sρ

)

+
J2

κ+ i∆

(
SρS†− ρS†S

)
. (19)
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Rearranging the various terms we get

ρ̇ = −i [Heff , ρ]

+ (γ+Γ)
[
2σ1ρσ

†
1−σ

†
1σ1ρ− ρσ

†
1σ1
]

+(γ+Γ)
[
2σ2ρσ

†
2−σ

†
2σ2ρ− ρσ

†
2σ2
]

+Γ
[
2σ1ρσ

†
2−σ

†
1σ2ρ− ρσ

†
1σ2
]

+Γ
[
2σ2ρσ

†
1−σ

†
2σ1ρ− ρσ

†
2σ1
]
, (20)

where Γ= J2κ/(κ2+∆2) is the damping rate induced by
the radiation mode. Notice that the latter also gives rise
to decay channels which mix the polariton operators (last
two lines of eq. (20)). Furthermore, the resulting effective
Hamiltonian is given by

Heff = −δ (σz1 +σz2)+
J2∆

κ2+∆2

(
σ†1σ1+σ

†
2σ2
)

+
J2∆

κ2+∆2

(
σ†1σ2+σ

†
2σ1
)

+
Jα

∆+ iκ

(
σ†1+σ

†
2

)
+
Jα

∆− iκ (σ1+σ2) . (21)

The second term is the frequency (Stark) shift and it can
be made to cancel with the first one by a proper choice of δ.
Hence, we will consider hereafter the effective Hamiltonian
as simply given by the second and third lines of eq. (21).
It contains an effective interaction term between the two
polaritons as well as population driving terms.

Steady-state entanglement. – At the steady state
eq. (20) becomes

0 =−ix
[
σ†1+σ

†
2, ρ
]
− ix∗ [σ1+σ2, ρ]− iy

[
σ1σ

†
2+σ

†
1σ2, ρ

]

+z
(
2σ1ρσ

†
1−σ

†
1σ1ρ−ρσ

†
1σ1+2σ2ρσ

†
2−σ

†
2σ2ρ−ρσ

†
2σ2
)

+
(
2σ1ρσ

†
2−σ

†
1σ2ρ−ρσ

†
1σ2+2σ2ρσ

†
1−σ

†
2σ1ρ−ρσ

†
2σ1
)
,

(22)

where x= α(∆− iκ)/(Jκ), y=∆/κ and z = 1+ γ/Γ.
The steady-state solution of eq. (22) can be

found by writing the density operator and the
other operators in a matrix form, in the basis
B= {|ẽ⟩1|ẽ⟩2, |g̃⟩1|ẽ⟩2, |ẽ⟩1|g̃⟩2, |g̃⟩1|g̃⟩2}. Let us para-
metrize the density operator as

ρss =

⎛

⎜⎜⎝

A B1+ iB2 C1+ iC2 D1+ iD2
B1− iB2 E F1+ iF2 G1+ iG2
C1− iC2 F1− iF2 H I1+ iI2
D1− iD2 G1− iD2 I1− iI2 J

⎞

⎟⎟⎠ ,

(23)
where J = 1−A− E −H to respect the requirement
Tr{ρss}= 1. The matrix representation of the other
operators comes from

σ1 =

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟⎟⎠ , σ2 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ . (24)

By using matrices (23) and (24) in the r.h.s. of eq. (22),
we get a single complex matrix M which must be equal to
zero. Then, equating to zero the entries of M we get a set
of equation for the entries of ρss. SinceM is Hermitian we
can consider

Mjj = 0, j, k= 1, 2, 3, 4, (25)

ℜ{Mjk}= 0, k > j, (26)

ℑ{Mjk}= 0, k > j, (27)

so to have a set of 16 linear equations. Writing x= x1+ ix2
and solving analytically the set of equations we obtain for
x2 = 0

A =
x41
d
,

B1 = 0, B2 =−
x31z

d
,

C1 = 0, C2 =−
x31z

d
,

D1 = −
x21z(1+ z)

d
, D2 = y

x21z

d
,

E =
x21(x

2
1+ z

2)

d
,

F1 =
x21z

2

d
, F2 = 0,

G1 = −y
x1z2

d
, G2 =−

x1z(x21+ z+ z
2)

d
,

H =
x21(x

2
1+ z

2)

d
,

I1 = −y
x1z2

d
, I2 =−

x1z(x21+ z+ z
2)

d
,

(28)

where
d= 4x41+4x

2
1z
2+ z2

(
y2+(1+ z)2

)
. (29)

Notice that for x1 = 0 we have formally analogous solu-
tions that lead to the same physical result, hence they are
not reported.
Now that we know the stationary density matrix, we

can use the concurrence as measure of the degree of
entanglement [31]:

C(ρss) =max {0,λ1−λ2−λ3−λ4} , (30)

where λi’s are, in decreasing order, the nonnegative square
roots of the moduli of the eigenvalues of ρssρ̃ss with

ρ̃ss = (σ
y
1σ
y
2 ) ρ

∗
ss (σ

y
1σ
y
2 ) , (31)

and ρ∗ss denotes the complex conjugate of ρss. With
respect to the basis B we have

ρ̃ss =

⎛

⎜⎜⎝

J −I1− iI2 −G1− iG2 D1+ iD2
−I1+ iI2 H F1+ iF2 −C1− iC2
−G1+ iG2 F1− iF2 E −B1− iB2
D1− iD2 −C1+ iC2 −B1+ iB2 A

⎞

⎟⎟⎠ ,

(32)
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Fig. 2: Concurrence C vs. x (real) and y for z = 1.01, 2, 3, 5
(from top to bottom). The function is plotted for |x1|! |y|.

In fig. 2 we show the concurrence as a function of x (real)
and y for increasing values of z (top-bottom). Since it is
x1 = (α/J)y, we should only consider |x1|! |y| due to the
assumed condition α/J ! 1.
We first notice that by increasing y, the concurrence

increases quite slowly, and a maximum amount of entan-
glement is approximately 0.3 for y= 15 and x1 =±2.135.
This is similar to the amount of stationary entanglement
achievable with an effective interaction of the kind σz1σ

z
2

when combined with an intricate feedback and cascad-
ing [17]. Then, by increasing the value of z (i.e. the value of
γ) there is a broadening effect on the profile of the concur-
rence. However, the maxima decrease very slowly showing
a robustness of entanglement against polaritonic losses.
One could try to employ entanglement witnesses

to detect this entanglement [25]. A witness can be
constructed from the density matrix corresponding to
the maximum value of the concurrence. This would be
a traceclass operator W in the Hilbert space of the two
polaritonic qubits such that Tr[Wρss]" 0 for all separable
states, while Tr[Wρss]< 0 for the considered entangled

id x y
z id

x
y
z

w j,k

-0.2

0

0.2

Fig. 3: Elements wj,k of the entanglement witness W detecting
the density matrix which maximizes the concurrence in fig. 2,
top.

state. Let ρT1ss (C) be the partially transposed steady state
density operator corresponding to a value C > 0 of the
concurrence.
Let also be |Ψ−⟩ its eigenvector corresponding to the

minimal (negative) eigenvalue. Then W = (|Ψ−⟩⟨Ψ−|)T1
Actually, it can be re-expressed in the Pauli decomposition
as

W =
∑

j,k=id,x,y,z

wj,k σ
j
1⊗σk2 , (33)

where σid = I and the coefficients turn out to be

wj,k =
1

4
Tr
[
σj1⊗σk2 (|Ψ−⟩⟨Ψ−|)T1

]
. (34)

In fig. 3 we show these coefficients for the entanglement
witness coming from the density matrix corresponding to
the maximum value of the concurrence in fig. 2. As we
can see, the elements with the most significant weights
(greater than 0.055) for measuring the witness, correspond
to two measurements: σz1 ⊗σz2 and σx1 ⊗σ

y
2 . To implement

the σz measurement in an experiment, one would need to
make a measurement of the population of |1−⟩. This could
be done by employing the usual atomic state measure-
ment techniques by the application of a laser field driving
|1−⟩ to a third (auxillary) atomic level and observing
the fluorescence [32]. For σx,y first a rotation to the
x, y basis through the application of a field of frequency
ωpol = ω0− g and then σz measurement as above.
The values of x and y used in fig. 2 to get maximal

entanglement would correspond to ∆= 750J , κ= 50J ,
G= γ = 10−4J . The pumping coherent field is taken to
have roughly α̃= 104 photons. J is tunable and depends on
the coupling of the photonic modes between neighboring
cavities. Assuming this to be of the order of 1010Hz, this
would correspond to a cavity dissipation rate κ≈ 1013Hz
and a polaritonic decay rate γ ≈ 108Hz. These are within
the near future in technologies such as coupled toroidal
microcavities [22] and coupled superconducting qubits.
Coupled defect cavities in photonic crystals arrays are also
fast approaching this regime and are extremely suited for
the fabrication of regular arrays of many coupled defect
cavities interacting with quantum dots [23]. In all tech-
nologies, an increase in J , the coupling between the cavity

20007-p5



D. G. Angelakis et al.

modes, further reduces the requirements on the various
lifetimes of the polaritonic and photonic field modes.

Conclusion. – To summarize, this paper presents
an example of entangling two qubits in the presence
of dissipation despite the fact that each qubit has a
continuously decaying state. The entanglement is not
transient but stationary, and thereby easy to verify in
an experiment, for which there is also a relevant witness.
Though the amount of entanglement is not maximal, it is
still very interesting as it is for a completely open system.
Here although we pump classically, quantum coherence
can be established as photons can coherently hop from
left to right through the middle cavity. As opposed to
the typical case of, say, many-body systems or even the
case of two purely atomic qubits in a single cavity or
extremely close as to be able to directly interact, here
there is the added advantage that the entangled qubits
are easily individually accessible (being encoded in distinct
atom-cavity systems) for measurements.
Although steady-state entanglement has been pointed

out for gas-type systems (i.e. systems in which the
decoherence processes act locally on the system particles
as opposed to strongly coupled systems where they act
globally) [33], here is quite intriguing the mechanism
from which it generates. It relies on the possibility of
compensating losses (through the driving) while maintain
the coherence (through the light-matter interaction always
on). Hence, a simple classical laser field driving the
central cavity/connecting fiber is sufficient to entangle the
polaritonic qubits. Loosely speaking, the model presented
here can be somehow considered as a complement of
that studied in ref. [34], where two driven modes achieve
entanglement through an interaction with an atom. Our
scheme is apparently more effective to generate steady-
state entanglement and it does not show evidences of
stochastic resonance effects (at least by increasing γ).
Finally, a scheme feasible with current or near future

technology and able to verify polaritonic entanglement
as the one we have suggested in this paper, would be a
significant first step towards the realization of the plethora
schemes to simulate many-body systems and quantum
computation using coupled cavities.
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