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Abstract — In an array of coupled cavities where the cavities are doped with an atomic
V-system, and the two excited levels couple to cavity photons of different polarizations, we show
how to construct various spin models employed in characterizing phenomena in condensed matter
physics, such as the spin-(1/2) Ising, X X, Heisenberg, and X X Z models. The ability to construct
networks of arbitrary geometry also allows for the simulation of topological effects. By tuning the
number of excitations present, the dimension of the spin to be simulated can be controlled, and
mixtures of different spin types produced. The facility of single-site addressing, the use of only the
natural hopping photon dynamics without external fields, and the recent experimental advances
towards strong coupling, makes the prospect of using these arrays as efficient quantum simulators

promising.

Copyright © EPLA, 2008

Introduction. — The burgeoning field of quantum
computation promises much to the science and technology
community. While the ability to factor large numbers
efficiently may still be some way off, the advances and
potential applications brought along with the understand-
ing and control of quantum processes, from beautiful
manipulations on minute systems [1] through to coherent
many-body operations [2], cannot be underestimated.
One of the first such applications is likely to be the
simulation of one quantum system with another, more
easily manipulated, quantum system. The most general
results have been expressed by showing how to simulate
one Hamiltonian with another with the help of a series
of extremely fast single-qubit rotations, breaking the
evolution down into a sequence of stroboscopic pulses
which approximate the desired evolution [3], which is
known as a Trotter decomposition. However, in physical
systems such as optical lattices and ion traps, we possess
much more direct ways of simulating a variety of different
systems, merely by adjusting periodic potentials using,

(2)E-mail: dimitris.angelakis@gmail.com

for example, globally applied lasers [4], making such
simulations feasible with current technology.
Of particular interest are models of the form

H=Y "B-Gi+Y MNZiZj+ XX X;+\YiY;, (1)
i (i.3)

where (i, j) denotes all nearest-neighbour pairs on a lattice
of a particular geometry (typically, a 1D chain, or 2D
square lattice) and & is the vector of Pauli matrices
X, Y and Z. There are a number of special cases
which are commonly examined. For example, the Ising
model (A, #0) in a transverse magnetic field (B, #0)
is a simple one-dimensional model which exhibits critical
properties. Others include the XX (A; =\, and A, =0),
Heisenberg (A; =Ay=X.) and XXZ (A, =X, # ;). In
two-dimensional lattices, such as the hexagonal lattice,
simple topological models arise. One possible test-bed
for these ideas is an optical lattice setup where the
natural Bose-Hubbard Hamiltonian can be manipulated to
produce these topological, critical and other effects [5,6].
In addition, they are capable of creating three-body terms
and chiral interactions [7].
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Coupled cavities arrays (CCAs) have been initially
proposed for the implementation of quantum gates [8].
Recently, intense interest has arisen from the demon-
stration that a polaritonic Mott transition and a
Bose-Hubbard interaction can be generated in these
structures [9-11]. In the same work it was shown that
the Mott state could be mapped directly to a spin XX
model [9]. These papers lead to a plethora of studies
on various properties of CCAs in the direction of many
body simulations [12], quantum computation [13] and
production of photonic entanglement [14]. The study
of CCAs provides a theoretical framework that can
be implemented using a variety of technologies such
as photonic crystals, toroidal microcavities and super-
conducting qubits [15-17]. Thus, the aforementioned
results are not bound to a specific physical system.

In this paper, the aim is to extend this theoretical
framework by restricting to the on-resonance, strong
coupling, case and examining how one might enrich the
simulated model by incorporating more complex atomic
structures within the dopants, and by utilising photons
of differing polarisations; the goal being to achieve as
much of the generalised model described in eq. (1) as
possible without resorting to a Trotter decomposition,
which imposes additional experimental difficulties. While
such decompositions are applicable to the original CCA
proposals [9-11], a proposal implementing similar models
through the rapid switching of a number of off-resonant
time-dependent optical fields followed up by a Trotter
expansion has recently been proposed [18]. Coupled
cavity arrays are capable of single-qubit addressing, so
the corresponding local magnetic fields Bina spin model
simulation are readily achieved. The key to creating the
desired ZZ (which was absent in initial proposals [9-11])
interaction is by suitably selecting the degeneracy of the
energy levels of the dopant atoms. We show how an atomic
V-system is capable of achieving this. This will provide
the additional benefit that simply by tuning the number
of excitations in the system, a large range of different,
higher-dimensional, spin models can be simulated. The
possibility of simulating high-dimensional spins in the
presence of strong dissipation using constant external
fields is also currently being examined [19]. In the present
work, for the case of small dissipation, we present a simpler
scheme utilizing just the natural photon hopping dynam-
ics of CCAs, and no time-dependent external fields or
detunings.

Atomic V-system. — We start by considering an
array of cavities, placed on the vertices of an arbitrary
lattice (typically, we consider a regular lattice such as
a 1D chain or 2D plane). Each cavity is doped with
a single system (which we refer to as an atom), whose
energy level structure is that of a ground state, |g) and
two degenerate excited states |A) and |B), depicted in
fig. 1. Within each lattice site, the Hamiltonian takes
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Fig. 1: The atomic V-system on resonance with a cavity. There
are two orthogonal photon types, a' and b, which only cause
transitions to a single level (A or B) from the ground state. This
gives rise to a non-linear internal structure on each site.

the form
Hiny = wo (aa® +bb' + |A)A| + |B)B|)
Au|AYAl+ Ap|B)B|
+g (|A) (gl @ a+|g)(Al@al)
+9 (IB)(gl®b+9)(B|@bT),

where af and b create photons of orthogonal polarisations,
and are those responsible for promoting the ground state
of the atom to the excited states |A) and | B), respectively.
Henceforth, we assume that the atomic levels and the
cavity are on resonance (i.e. the characteristic frequency
of the cavity is equal to the frequency of the atomic
transitions of the ground state to the excited states; Ayg =
Ap =0). The strength g represents the strength of the
coupling between the cavity and the atom.

In the basis |, Na, Ng), we can calculate that the
(unnormalised) on-site eigenvectors are

9,,) =VS—n|A,n—1,8—n) - Vn|B,n,S —n—1)
U5 ) = VnlA,n—1,5 —n)+ V5 —n|B,n,S —n—1)

i\/§|g,n,5—n>
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with energies Swy and Swy & gv/S respectively (see fig. 1).
N4 and Np are the number of ¢ and b photons in the
cavity, and v is the state of the atom. Here, n is an
integer index (0 to S) which enumerates the basis within
the manifold containing S excitations.

Let us assume that we are working at unit filling
fraction, so we expect one excitation per lattice site,
meaning that only the states

10) = (]A,0,0) -
1) =(1B,0,0) —

are populated. This arises from the observation that there
is an energy penalty of U = (2 — 1/2)g for moving from one
excitation per lattice site to having two excitations on one
site, and none on the other.

The individual cavities are coupled together by an
interaction

19:1,0))/v2,
19,0,1))/V2,

Hpop = Ja(alais1 +asal ) + Jo(blbisr +bibl, ),

where J,, J, < U correspond to the hopping strengths
for the two different polarizations of photons between
neighbouring cavities [9]. The effect of the coupling can
be studied by applying perturbation theory (to the second
order) to a pair of neighbouring sites, using the formula

2

a,b€{0,1}2

th Hh a
Hepr = ‘Z (0] Op|u :U'| opla)

)

where |u) are all possible eigenvectors involving 2 excita-
tions on one site, and none on the other. Calculating the
relevant matrix elements in the |0), |1) basis we find the
effective interaction Hamiltonian
Hepp=—B.(1®Z+2ZQ1) - . ZQ07Z— X (XX +YY),
(2)

where
31 5
K= 32(J?+Jb) Bfwﬂﬁ—ﬁy
) 9T,y
A, = 32 (J24+70), Xa= T6g "

and we have ignored the term 1 which simply contributes
a global phase. The local magnetic fields can be manipu-
lated by applying local Stark fields of our own, thereby
leaving an X X7 Hamiltonian where the coefficients A,
and )\, are independently tunable (at manufacture of the
device). A comparison of the theoretical prediction and
an exact diagonalization are depicted in fig. 2. A degree
of tunability of the Hamiltonian can be introduced at
run-time by varying the detunings of the atomic transi-
tions. However, one must remain in the regime where the
detuning is small so that the perturbative expansion still
holds, which restricts the range of variation.

N
S

P
3
Ground state energy

3.5x10°°

Jb
0.00001

5.%10° 0.000015 0.00002
Fig. 2: A comparison of the ground-state energy between a
simulation of the full system (dots) and the prediction from
perturbation theory (solid line) for 4 cavities, doped with an
average of 1 excitation per site. The chosen parameters are
g:10_37 J,=10"5. A phase transition occurs at J, =
between the [0)®* and [0)®* ground states. The energies
have been scaled to remove the shift of 4wy —4g. To observe
other phases, such as the one in the XXZ model requires
compensation of the B,-term by external fields.

Generalised model. — Our hopping terms, with
strengths J, and J,, effectively describe transmission of
photons (between cavities) through a birefringent crystal
with the fast and slow axes aligned with the directions a
and b. In an optical lattice, one can rotate these axes by
applying a Raman transition to the tunnelling potential.
In CCAs, the ability to apply this rotation is dependant
on the particular realisation under consideration. In
a setting where the cavities are connected by optical
fibres, such as fibre-coupled micro-toroidal cavities [15],
these optical fibres represent the birefringent material
that we require, and the optical axes (¢ and d) can be
aligned independently of the directions defined by the
atomic transitions (a and b). Moreover, the degree of
birefringence (J,/Jp) and the orientation can potentially
be tuned during the experiment by applying an electric
field perpendicular to the fibre, and making use of the
Kerr effect, rather than having to initialise all of these
properties at the point of manufacture. In circuit QED
and photonic crystal realisations, however, the hopping
comes directly from the overlap of the wavefunctions
of the individual sites [16,17], which are thus directly
connected to the a/b basis, and it seems unlikely that
these will support this generalisation. In cases where this
rotation can be achieved, the two sets of axes are unitarily

related,

cf af

(@)=v ()
and the simulated Hamiltonian is changed to
(Ve V)He;(V®V)'. While this generates a variety

of different terms, for example X;Y5+Y;Xso, we are
unable to realise the fully anisotropic model XY Z.

20001-p3
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Fig. 3: In a hexagonal lattice, with spin 1/2 located at each
vertex, and the indicated couplings, topological effects arise.

One very useful simulation that is introduced due to this
rotation is that of the hexagonal lattice [5]. At one limit,
this yields the toric code [20], and in another region yields
non-Abelian anyons with the aid of an external magnetic
field. It is readily formed by setting J, =0, which implies
that A\, =0, and then rotating, along set directions, the
remaining term ZZ into XX and YY as required (see
fig. 3).

Within the optical lattice community, the possibility
of setting A\; =X, =0 has been explored with a view
to eliminating two-body terms, so the leading order of
perturbation theory gives three-body interactions. Armed
with this toolbox, one could generate many interesting
effects such as chiral terms [7]. In optical lattices, this
possibility is achieved by using a Feshbach resonance, such
that the collisional energies U can be tuned arbitrarily.
In the present system, in order to set A\, =\, =0, one
requires J, = Jp =0, i.e. the spins are not coupled, and
so three-body terms cannot arise. We might hope to
mimic the effect of Feshbach resonances by introducing
a detuning between the atom and the cavity, which would
serve to shift the energy levels. However, in order to
maintain the system’s integrity, such a detuning should
be A4 p < g, in which case the shift in energies is unable
to entirely cancel the A\, term.

Higher-spin models. — Unlike the simple two-level
dopant considered in [9], changing the average number
of excitations per site influences the Hamiltonian that
is simulated. If there is an average of S excitations per
site, where S is an integer, then there are S+ 1 ground
states, [Wg ), for n=0 to S, enabling the simulation

of a spin—%S particle. Again, there is an energy barrier
of U=(2vS —§+1—-+/5—1)g~ gS—/? to having any
number other than exactly S excitations on each lattice
site, so the ground state is the Mott phase for small J/U.
All of these models can simulate a Hamiltonian of the form
in eq. (2), except with differing coupling coefficients, where
the spin operators take on the form of the generalised
SU(2) X, Y and Z rotations respectively for the spin
%S . For example, with 2 excitations per site, we realise an
array of qutrits interacting through a form described by

eq. (2), where X, Y and Z are replaced by the equivalent
qutrit operators,

010 0—i 0
Jx=1101 //Vﬂi, Jy=i 0 —i //\ﬂi
010 0i 0
Jz=—i[Jx, Jy]
and
124v/2 53
=——=(J2+J}), B.=—1 (J2-J3),
79 ( b) 2\&9 ( b)
123 123v/2J,J,
)\Zzi(JngJb?), )\IZL_
7V2g g

Again, further refinements can be incorporated by imple-
menting the polarization rotations due to the presence of
a birefringent material. If the rotation is described by the
2 X 2 unitary matrix,

— 0N X4nyY+n,Z
V=c 0(n Ny n )7

then the effective Hamiltonian is rotated by

VI _ e—i@(anx-‘y-ny.]y-‘,-anz).

The functional form of the coupling constants for arbitrary
S can be calculated, but is pathological. We note, however,
that the leading-order matrix elements are O(+/S). This
significantly adds to the diversity of models that can be
efficiently simulated in this simple model, just by changing
the number of excitations present in the initial state of the
system.

Non-integer filling. — Given that an integer number
of excitations, S, per lattice site describes spin—%S parti-
cles, a non-integer value of average excitations per site
potentially describes a blend of different types of parti-
cles. Consider the general case where the filling fraction is
S+ f,0< f < 1. The minimum energy configuration is for
a mixture of particles of spin %S and £ (S +1) in the ratio
(1= f): f. The analysis of first-order perturbation theory
on Hpep, yields, for the low-energy dynamics, a swapping
of the particles between the sites, governed by the effective
Hamiltonian

HEff|\IJ§,i>|\I’§+1,j+1> =
S++/S+1)?
(V5+V5+1) (Jav ((+ D)0+ D Wsyy,40¥s;)

+Ip /(S =i T D)5 — )51, )195541))

4(5+1)

which should be symmetrised for the possibility where the
higher spin particle starts on the left. As already discussed,
to first order, there is no interaction between particles
of the same type. While we are unaware of a physical
phenomenon that this simulates, it completes the analysis
of the system in the on-resonance case, and demonstrates
the potential that coupled-cavity arrays possess.

20001-p4



Reproducing spin lattice models in strongly coupled atom-cavity systems

Conclusions. — We have described a scheme to realize
a family of spin systems in an array of coupled cavities.
By introducing a V-configuration to the dopants, the
range of nearest-neighbour Hamiltonians that can be
simulated is vastly enhanced. With an integer average
of S excitations per site, we simulate nearest-neighbour
spin—%S interactions. For S =1, the spin—% model allows
us to reproduce the Heisenberg, X X and X XZ models
as well as those that exhibit both phase transitions and
topological features. In the case of a non-integer filling
fraction, we simulate a mixture of two particle types
interacting. The resultant strong spin-spin coupling and
the individual addressability of the separated cavity-atom
systems make this approach a promising step towards
the realization of quantum simulators for many-body spin
problems. Since completing this work, we have become
aware of other work which has considered the same
V-system [21], which just considered the case of S =1,
recovering the same results presented here.

The results presented here for the simulation of spin-
1S particles are exact, up to terms O(J*/g*) and in the
absence of decoherence (J =max(J,,Jy)). The primary
causes of decoherence are photon loss from the cavities
and spontaneous emission from the atoms, whose rates
are given by k and <, respectively. If decoherence is
present in the system, our results remain valid while the
corresponding rates are dwarfed by the effective hopping
rates, which requires v/S.J?/g > max(v/Sk, 7).

Note that even though this scheme is not especially
robust against decoherence, such losses cause the system
to leave the computational subspace and are thus
detectable in the final measurement steps. In order to
more successfully combat decoherence, one must utilise
a scheme where the states of interest are ground or dark
states rather than excited states. Work is progressing in
that direction, with results to date requiring the use of
a complex scheme employing constant external fields,
an elaborate detuning configuration and weakly coupled
cavities [19]. Nevertheless, it may be possible to find
interesting regimes within our model where quantum
phenomena persist, even in the presence of decoherence.
For example, in [22], it is described how entanglement
can persist in the steady state between a pair of noisy
cavities when coupled through a third, pumped, cavity.
Although this work makes no reference to how such a
scheme might scale, or what information might usefully
be extracted, it suggests that further investigation is
warranted. The case of non-integer filling fraction is, in
fact, more robust to decoherence because it only utilises
first-order perturbation theory, and hence we work in
a regime where g>>.JS > max(v/Sk,7y). For the case
of circuit QED recently g/max(k,7y)~400 has been
reported [16].

Another intriguing case to study is the atomic
V-system in the off-resonant case, and see how the
behaviour of the two different photon types mimics those
of two-species or single species spinor Bose condensates

(see, for example, [23]), which should be different in
nature to the non-integer fractional filling discussed here
(it has the potential to allow particles to change type).
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