
           

Weaving light-matter qubits into a one way
quantum computer
To cite this article: Dimitris G Angelakis and Alastair Kay 2008 New J. Phys. 10 023012

 

View the article online for updates and enhancements.

Related content
Steady-state entanglement between
hybrid light-matter qubits
D. G. Angelakis, S. Bose and S. Mancini

-

Quantum simulations and many-body
physics with light
Changsuk Noh and Dimitris G Angelakis

-

Quantum computation in optical lattices via
global laser addressing
Alastair Kay and Jiannis K Pachos

-

Recent citations
Guillermo Romero et al-

Quantum simulations and many-body
physics with light
Changsuk Noh and Dimitris G Angelakis

-

One-step implementation of a multiqubit
phase gate with one control qubit and
multiple target qubits in coupled cavities
Hong-Fu Wang et al

-

This content was downloaded from IP address 137.132.250.8 on 05/11/2017 at 13:06

https://doi.org/10.1088/1367-2630/10/2/023012
http://iopscience.iop.org/article/10.1209/0295-5075/85/20007
http://iopscience.iop.org/article/10.1209/0295-5075/85/20007
http://iopscience.iop.org/article/10.1088/0034-4885/80/1/016401
http://iopscience.iop.org/article/10.1088/0034-4885/80/1/016401
http://iopscience.iop.org/article/10.1088/1367-2630/6/1/126
http://iopscience.iop.org/article/10.1088/1367-2630/6/1/126
http://dx.doi.org/10.1007/978-3-319-52025-4_7
http://dx.doi.org/10.1007/978-3-319-52025-4_7
http://iopscience.iop.org/0034-4885/80/1/016401
http://iopscience.iop.org/0034-4885/80/1/016401
http://dx.doi.org/10.1364/OL.39.001489
http://dx.doi.org/10.1364/OL.39.001489
http://dx.doi.org/10.1364/OL.39.001489


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Weaving light-matter qubits into a one way
quantum computer

Dimitris G Angelakis1,2,3,4 and Alastair Kay1
1 Centre for Quantum Computation, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, Wilberforce Road,
CB3 0WA, UK
2 Centre for Quantum Technologies, National University of Singapore,
2 Science Drive 3, 117542 Singapore
3 Science Department, Technical University of Crete, Chania, Crete,
73100, Greece
E-mail: dimitris.angelakis@qubit.org

New Journal of Physics 10 (2008) 023012 (10pp)
Received 18 October 2007
Published 12 February 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/2/023012

Abstract. The great advantage of measurement-based quantum computation is
that one would simply need the ability to prepare a particular state, known as
the cluster state, and subsequently to perform single-qubit measurements on it.
Nevertheless, a scalable implementation is yet to be realized. Here, we propose a
hybrid light–matter system consisting of coupled cavities interacting with two
level systems. Utilizing the stable, individually addressable, qubits resulting
from the localized long-lived atom–photon excitations, we demonstrate how to
use the natural system dynamics to ‘weave’ these qubits into a cluster state and
propose the implementation of quantum algorithms employing just two rows of
qubits. Finally, we briefly discuss the prospects for experimental implementation
using atoms, quantum dots or Cooper pair boxes.
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1. Introduction

Measurement-based quantum computation has revolutionized quantum information processing,
and the physical systems with which it can be implemented [1]. Quantum computation on
cluster states [2] has been proposed in a variety of systems, including linear optics, quantum
dots, neutral atoms in optical lattices and flying atom schemes [3]. To date, experiments have
been performed using optical lattices [4], where the cluster state can be created but the current
lack of individual addressing remains the stumbling block, and linear optics [5, 6], where
scalability remains a problem due to the need to generate the initial many-photon state from, for
example, high orders of the parametric down conversion process. On the other hand, there have
recently been theoretical and experimental breakthroughs into the possibility of direct coupling
of high Q cavities and in achieving strong coupling between the cavity mode and an embedded
two-level system. At the single cavity level, a plethora of implementations of quantum
computing have been proposed and some already been implemented [7]. In the case of coupled
cavities, a variety of technologies have been recently employed, namely fibre coupled micro-
toroidal cavities interacting with atoms [8], arrays of defects in photonic band gap materials
(PBGs) [9] and superconducting qubits coupled through microwave stripline resonators [10].
These have led to proposals for generating control phase gates for photons [11], the production
of entanglement [12] and the realization of Mott insulating and superfluid phases [13, 14]. Here,
we propose the use of such arrays for the realization of cluster state quantum computation.

2. System description

We start by considering an array of N coupled cavities doped with two-level systems and show
how to construct qubits from the hybrid light–matter excitations (polaritons) of each cavity. The
atomic states at site k are denoted by | gik and | eik (we henceforth use the term ‘atom’ to refer
to any relevant two level system which is composed of a ground and an excited state). The
Hamiltonian describing the system is the sum of three terms; H free is the Hamiltonian for the
free light and dopant parts, H int describes the internal coupling of the photon and dopant within
each cavity and H hop encapsulates the effect of light hopping between cavities.

H free = !d

NX

k=1

a†k ak +!0
X

k

| eihe |k , (1)
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Figure 1.We work with a 2D array of atom–cavity systems. When the atom is on
resonance with the cavity, the ground state |g, 0i and the first excited state |1�i
of the combined atom–photon (polaritonic) system in each site can be used as
qubits. By applying Stark shifts with control electrodes, or properly tuned laser
fields, to sets of qubits (the grey gates shown under the qubits), we disable the
XY Hamiltonian of a qubit to all of its neighbours. Consecutive application of
gates A, B, C and D, depicted in parts (a), (b), (c) and (d), each isolate chains of
3 qubits, realizing controlled-phases and SWAPs (swapping quantum/classical
gates) between the qubits at either end of the chain (the dashed lines indicate
where the controlled-phase gates have been applied), and are sufficient to connect
or weave the three chains, generating a cluster state in parallel across the whole
device. Single qubit rotations and measurements are made by properly applying
local external fields, utilizing the fact that the cavities can be well separated.

H int = g
NX

k=1

(a†k | gik he |k + ak | eik hg |k), (2)

H hop = A
X

h j,ki
(a†j ak + a ja

†
k ), (3)

!d and A are the photon frequencies and hopping rates, respectively and g is the light–atom
coupling strength. The term h j, ki denotes a sum over nearest-neighbours of the geometry of the
array under consideration; we are predominantly interested in the two-dimensional (2D) setting.
The H free + H int component of the Hamiltonian can be diagonalized in a basis of combined
photonic and atomic excitations, called polaritons (figure 1). These polaritons, for a system
on resonance (!0 = !d), are defined by creation operators P (±,n)†

k = | n±ikhg, 0 |k , where the
polaritons of the kth atom–cavity system are given by | n±ik = (| g, nik ± | e, n� 1ik)/

p
2 with

energies E±
n = n!d ± g

p
n (adopting the convention of h̄ = 1 ), and | nik denotes the n-photon

Fock state. As has been shown elsewhere, a polaritonic Mott phase exists in this system where
a maximum of one excitation per site is allowed [13]. This originates from the repulsion due to
the photon blockade effect [15]. In this Mott phase, the system’s Hamiltonian can be written in
the interaction picture as HI = A

P
h j,ki P

†
j Pk + Pj P

†
k , where P

†
k = P (�,1)†

k (figure 1). As double
or more occupancy of the sites is prohibited, one can identify P†k with � +k = � x

k + i�
y
k , where � x

k
and �

y
k are the standard Pauli operators. The system’s Hamiltonian then becomes the standard
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XY model of interacting spin qubits with spin up/down corresponding to the presence/absence
of a polariton.

HI = A
X

h j,ki
� x
j �

x
k + �

y
j �

y
k . (4)

Some applications of XY spin chains in quantum information processing can thus been
implemented in this system [16].

3. Cluster state generation

The typical implementation of cluster state quantum computing requires initializing all qubits
in a 2D lattice in the |+i = (| 0i+ | 1i)/

p
2 state and then performing controlled-phase (CP)

gates between nearest-neighbours. In the present system, we have no direct two-qubit gate and
the available interaction is not of the Ising type, which straightforwardly gives CP gates [2],
but an ‘always on’ global Hamiltonian coupling of the XY form. Some consideration of similar
scenarios has been previously made [17], although these have primarily concentrated on the
Heisenberg interaction. In comparison, the technique which we invoke induces entanglement
in a more stable way (from the exchange of two effective fermions [18, 19], and hence it
is topological in nature), requires fewer control structures but is inapplicable to the case of
Heisenberg coupling. Moreover, the strategy that we will outline momentarily is specifically
designed to cope with the always-on nature of the interaction—this is an aspect which is often
neglected when forming a cluster state either from Hamiltonian interactions such as the Ising
model or as the ground state of a Hamiltonian [20]; one must disable the system dynamics
once the state has been formed. This requirement can be realized by combining the system’s
natural dynamics with a protocol where some of the available physical qubits are allocated as
gate ‘mediators’ and the rest as the logical qubits. The mediator atoms can be Stark shifted on-
and off-resonance from their cavities through the application of an external field, inhibiting the
photon hopping and thereby isolating each logical qubit. The same inhibition of couplings will
be used to generate the cluster state. We note here that the error introduced in the step is due to
a second-order transition between on-resonance qubits (via a dark-passage through the central
off-resonant qubit), which is thus suppressed by a factor of order A/1, where 1 = !d � !0 is
the detuning of the off-resonant cavity.

Before describing the 4-step global gate sequence to create the cluster state, first observe
that to generate the control phase, it is enough to localize chains of three qubits, let them evolve
for a time t0 = ⇡/(2

p
2A) and then apply a measurement on the middle ‘mediator’ qubit (in

the � z basis). Depending on the measurement result, | 0i or | 1i, a non-local gate is generated
between the remaining two qubits, either SWAP.(� z ⌦ � z).CP or SWAP.CP, respectively
[16, 18]. In both the cases, the gates in addition to the CP are Clifford gates, and can thus
be recorded and taken into account during the measurement-based computation with the help
of an efficient classical computation. Alternatively, if the mediator starts in a known state,
say | 0i, then measuring it and post-selecting on the | 0i outcome acts as a useful form of
error suppression against timing errors (perfectly) and some forms of decoherence (giving some
improvement). On failure (the | 1i result), we can make use of the techniques of Barrett and Kok
to fix the error.

Our sequence to generate the cluster state initiates by preparing all qubits in the |+i state
through the application of global ⇡/2 pulse resonant with the |g, 0i ! |1�i transition. One
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Figure 2. The fidelity of generation of a cluster state on a 3⇥ 3 grid of
cavities, as the detuning 1 of the mediator off-resonance cavities is varied (in
units of the hopping A). The dashed line includes post-selection on getting | 0i
outcomes when measuring off-resonance qubits. The grey lines also incorporate
spontaneous decay and cavity leakage of 0.05A (dark) and 0.08A (light).

quarter of the sites will be used as logical qubits and the rest as ‘mediators’ and ‘off’ qubits
interchangeably. All qubits addressed by the gates A–D (figure 1) are, by default, ‘off’ (meaning
that they have been detuned from resonance via a Stark shift), thereby isolating all the qubits.
Switching on any one of the four gates thus creates chains of three qubits, which we use to
enact a CP between pairs of qubits (separated by a mediator qubit, which was previously off).
Consecutive use of each of the gates A–D (figure 1(a) ! 1(b) ! 1(c) ! 1(d)), serves to enact
a CP gate between a particular qubit and all of its nearest-neighbours, and this happens in
parallel across the whole device. The entire sequence is illustrated in the supplementary video
1, available from stacks.iop.org/NJP/10/023012/mmedia. The measurement sequence is then
applied as requested by the cluster state algorithm, utilizing the local accessibility of the sites—
in any implementation, the cavity–atom systems are well separated compared to the resolution
of the external field used for addressing them [8]–[10].

3.1. Consideration of errors

Apart from the aforementioned effect that comes through second-order perturbation theory,
which is the primary assumption we have made in deriving the system dynamics, and which
results in an error of order A/1, what other practical concerns are likely to limit the usefulness
of our scheme? Primarily, our concern should be decoherence, which will typically manifest as
cavity leakage and spontaneous emission from the atoms. In figure 2, we calculate the fidelity
of generation of a cluster state on a 3⇥ 3 grid of cavities, as the detuning1 of the mediator off-
resonance cavities is varied. The dashed line includes post-selection on getting | 0i outcomes
when measuring off-resonance qubits, while grey lines also incorporate spontaneous decay and
cavity leakage. We observe that the fidelity remains larger than 0.97 even when relatively large
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values of dissipation are included. More sophisticated schemes have the potential to further
reduce the experimental errors. For example, standard Hamiltonian simulation techniques allow
us to negate the second-order exchange term due to the off-resonance cavities, simply by
repeatedly applying �z gates to every second on-resonance triplet throughout the evolution. One
might even hope that we could use this coherent effect to enhance the scheme through the use
of, for example, optimal control techniques. Most of the errors considered here (cavity leakage,
spontaneous emission of the atom and on-off detuning of qubits) are local effects, introducing
local noise, which can ultimately be addressed by fault-tolerant techniques [22, 26].

Another class of properties that could be expected to have an effect are timing errors (when
the external fields are applied, and how quickly they can be ramped up to maximum strength),
and problems with system identification or manufacture. If the system is improperly identified
or manufactured, then we will be using an incorrect timescale for the evolution and, as such,
it is equivalent to a timing error. Within the difficulties of imperfect system manufacture is the
problem of ensuring that the atoms and cavities are on-resonance. However, if they are slightly
off-resonance, and we can determine this, external fields can be used to compensate. If this
is not possible, then, in fact, it does not cause a problem provided the detuning is sufficiently
small that we are still within the Mott insulator phase [13], the only difference will be a slight
change in the effective coupling between cavities, and hence another timing effect. Thanks to
the mediator spin, specifically our ability to measure it, we have a geometric robustness to
timing errors [23], i.e. if our timing error is O(�t), the accuracy with which the evolution is
achieved is only faulty by O(�t2). Finally, the entangling operation, which is the essential part
of the whole scheme, has a topological robustness—tuning the parameters of the Hamiltonian
differently leaves the generated phase entirely unaffected provided the evolution has completed
successfully. Essentially this is a result of the fact that the presence of | 1is in the system can
be mapped to the presence of fermions, and it is the topological robustness of the �ve sign
appearing when two fermions exchange which we are using [18].

In comparison to other schemes which involve Hamiltonian simulation techniques, i.e. the
use of fast single qubit rotations to manipulate one Hamiltonian into appearing like another
(specifically the Ising interaction for cluster states), timing errors in our scheme are negligible.
This is because Hamiltonian simulation techniques have two important timescales: the small
pieces of evolution, �t 0 ⌧ 1/A, and the fast single-qubit rotations which must be short in
comparison to �t ⌧ �t 0. The simulation is then accurate to �t 0. In comparison, we only use
the fast rotations (in order to implement the detuning), so our evolution is accurate to O(�t2).

4. Implementing algorithms

Initial experimental algorithmic implementations with coupled cavities can be expected to
utilize the most basic building block of our scheme, a 3⇥ 3 grid of cavities, which allows us to
generate a four-qubit cluster state. As with the four-photon cluster state initially used byWalther
et al [5] this cluster state would be suitable for demonstrating the preparation of an arbitrary one-
qubit state, an entangling gate between two qubits, and even the implementation of Grover’s
search algorithm on two qubits [5]. For example, by applying the local gates H ⌦ H ⌦ �z ⌦ �z,
where H is the Hadamard rotation, we convert the ‘box’ cluster that the 3⇥ 3 grid prepares
into the 1D cluster state of four qubits, which is given the interpretation of a single qubit, and
measurements on the state yield quantum gates on this single qubit. Moreover, generation of this
four qubit cluster state is simpler than generation of an arbitrarily sized cluster state because
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Figure 3. Sequence for minimizing the number of qubits required for a cluster
state computation. (a) After the first n� 1 steps of the algorithm, the first column
of qubits is initialized in the |+i state, and the third column, with qubits denoted
by ⇤, are in the state of output for the first n� 1 steps of the computation.
(b) We use control sequences, bringing mediator qubits on resonance, to convert
the |+i states into a cluster state, and to entangle them with the output qubits. The
SWAP in the entangling operation moves these output qubits to the first column.
(c) Measure the qubits of the first column as corresponds to the nth step of the
computation, and reinitialize in the |+i state. The rightmost column yields the
output. The sequence then repeats.

we only need two control steps instead of four, thereby keeping us even further within the
decoherence time of the system.

Perhaps the next important step would then be to demonstrate Shor’s factoring algorithm,
the factoring of 15 being the standard demonstration. To implement as a cluster state
computation, the six computational qubits [24] translate into the requirement of a cluster state
that is eleven qubits wide. Hence, we need an array which is 21 cavities wide. The breadth of
the cluster state, which corresponds to time in the circuit model, is a quantity that we can trade
against the time taken for the computation. At one extreme, we can create the whole cluster
state in one go, with the simple set of four steps already outlined, and we benefit from the large
degree of parallelism available to us. This requires a 2D grid of cavities of size 21⇥ 311.5 At
the other extreme, a grid of 21⇥ 3 cavities suffices. In this case, one starts with the 11⇥ 2
cluster state, and performs one time step of measurement (i.e. measure the 11 qubits in one
column). The result remains in the other column. We then repeat the cluster state generation
process, reinitializing the measured qubits in the cluster state, and performing the next time
step (figure 3). This requires 156 consecutive entangling steps, but the reinitializing of the
cluster state after measurement eliminates the effect of decoherence over this timescale. Any
combination between these two extremes is also possible, and is a necessary property of any
scalable implementation of cluster state computation for the sake of preventing decoherence.
5 To arrive at this required number of gates, we have taken the circuit presented in [24] and converted it into a
nearest-neighbour, two-qubit gate algorithm. Hence, the possibility for some small degree of optimization in the
number of qubits remains.
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Once initial cluster state experiments have been performed, it simply becomes a question
of howmany cavities one can reasonably couple together. Alternatively, since the two-qubit gate
that we can generate is entangling (and hence universal for quantum computation [25]), we can
also consider using it directly to implement the circuit model of computation. This has a much
smaller overhead of qubits, but instead requires much higher quality cavities. For example,
to factor 15 we would only need a 5⇥ 3 grid of cavities to give us six computational qubits.
However, we would need approximately 15 consecutive entangling steps (we have attempted to
minimize this number by allowing as many of the gates to be applied in parallel as possible, and
by optimizing the initial labelling of each qubit), hence requiring a time of order 15⇡/(

p
2A).

Hence, to reduce the effect of dissipative decay, we require an order of magnitude improvement
in the decoherence properties of the qubits to compensate for the increased running time.

5. Experimental implementations

As previously mentioned, there are three primary candidate technologies; fibre coupled micro-
toroidal cavities [8], arrays of defects in PBGs [9] and superconducting qubits coupled through
microwave stripline resonators [10]. In order to achieve the required limit of no more than one
excitation per site [13], the ratio between the internal atom–photon coupling and the hopping
of photons down the chain should be of the order of g/A ⇠ 102–101 (A can be tuned while
fabricating the array by adjusting the distance between the cavities and g depends on the type
of the dopant). In addition, the cavity/atomic frequencies should be !d, !0 ⇠ 104g, 105g and
the losses should also be small, g/max(, � ) ⇠ 103, where  and � are cavity and atom/other
decay rates. The polaritonic states under consideration are essentially unaffected by decay
for a time 10/A (10 ns for the toroidal case and 100 ns for microwave stripline resonators).
While the decay time of 10/A may seem uncomfortably close to the preparation time for a
cluster state,

p
2⇡/A, the previously described technique (figure 3) of continuously reforming

the cluster state and connecting it to the output of the previous stage allows a continuous
computation that exceeds the decay time for an individual cavity. The required parameter values
are currently on the verge of being realized in both toroidal microcavity systems with atoms
and stripline microwave resonators coupled to superconducting qubits, but further progress is
needed. Arrays of defects in PBGs remain one or two orders of magnitude away, but recent
developments, and the integrability of these devices with optoelectronics, make this technology
very promising as well. In all implementations the cavity systems are well separated by many
times the corresponding wavelength of any local field that needs to be applied in the system for
the measurement process.

6. Conclusions

In this paper, we have shown how universal quantum computation could be realized in a
coupled array of individually addressable atom–cavity systems, where the qubits are given by
mixed light–matter excitations in each cavity site. While single-qubit operations can be locally
achieved, the only available interaction between qubits is due to the natural system Hamiltonian.
We show how to manipulate this to give a CP gate between pairs of qubits. This allows
computation either using the circuit model, or a measurement-based computation, the latter
being most suited to reducing experimental errors. We have discussed possible architectures for
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implementing these ideas using photonic crystals, toroidal microcavities and superconducting
qubits and pointed out their feasibility and scalability with current or near-future technology.
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[15] Imamoḡlu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467–70

Birnbaum K M et al 2005 Nature 436 87
[16] Bose S 2003 Phys. Rev. Lett. 91 207901

Yung M-H, Leung D W and Bose S 2004 Quantum Inf. Comput. 4 174

New Journal of Physics 10 (2008) 023012 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevLett.95.030505
http://dx.doi.org/10.1088/1367-2630/7/1/194
http://dx.doi.org/10.1103/PhysRevA.73.022310
http://dx.doi.org/10.1088/1367-2630/8/10/231
http://dx.doi.org/10.1103/PhysRevLett.95.110503
http://dx.doi.org/10.1103/PhysRevLett.99.160501
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nphys507
http://dx.doi.org/10.1103/PhysRevLett.75.3788
http://dx.doi.org/10.1103/PhysRevLett.75.4710
http://dx.doi.org/10.1126/science.1078446
http://dx.doi.org/10.1038/35006006
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1038/nature01371
http://dx.doi.org/10.1038/nature05147
http://dx.doi.org/10.1063/1.1639134
http://dx.doi.org/10.1038/nmat1320
http://dx.doi.org/10.1126/science.1109815
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1016/j.physleta.2006.10.046
http://dx.doi.org/10.1364/JOSAB.24.000266
http://arxiv.org/abs/0711.1830
http://arxiv.org/abs/0712.2413
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://www.njp.org/


10

[17] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
Borhani M and Loss D 2005 Phys. Rev. A 71 034308
Koniorczyk M, Rapan P and Buzek V 2005 Phys. Rev. A 72 022321

[18] Albanese C, Christandl M, Datta N and Ekert A 2004 Phys. Rev. Lett. 93 230502
[19] Clark S, Moura-Alves C and Jaksch D 2005 New J. Phys. 7 124
[20] Bartlett S D and Rudolph T 2006 Phys. Rev. A 74 040302
[21] Barrett S D and Kok P 2005 Phys. Rev. A 71 060310

Benjamin S C 2005 Phys. Rev. A 72 056302
[22] Raussendorf R, Harrington J and Goyal K 2007 New J. Phys. 9 199
[23] Kay A 2006 Phys. Rev. A 73 032306
[24] Lieven M K et al 2001 Nature 414 883
[25] Raussendorf et al 2003 Phys. Rev. A 68 022312
[26] Kieling K, Gross D and Eisert J 2007 J. Opt. Soc. Am. B 24 184

New Journal of Physics 10 (2008) 023012 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevA.71.034308
http://dx.doi.org/10.1103/PhysRevA.72.022321
http://dx.doi.org/10.1103/PhysRevLett.93.230502
http://dx.doi.org/10.1088/1367-2630/7/1/124
http://dx.doi.org/10.1103/PhysRevA.74.040302
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.72.056302
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1364/JOSAB.24.000184
http://www.njp.org/

	1. Introduction
	2. System description
	3. Cluster state generation
	3.1. Consideration of errors

	4. Implementing algorithms
	5.  Experimental implementations 
	6. Conclusions
	Acknowledgments
	References

