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Abstract 

We study two distinct multi-level atomic models in which one transition is coupled to a Markovian reservoir, while 
another linked transition is coupled to a non-Markovian reservoir. We show that by choosing appropriately the density of 
modes of the non-Markovian reservoir the spontaneous emission to the Markovian reservoir is greatly altered. The existence 
of 'dark lines' in the spontaneous emission spectrum in the Markovian reservoir due to the coupling to specific density of 
modes of the non-Markovian reservoir is also predicted. © 1999 Elsevier Science B.V. All rights reserved. 

PACS: 42.50.-p; 42.70.Qs; 42.50.Lc 

1. Introduct ion 

It is now well understood that spontaneous emission of a quantum system depends crucially on the nature of 
the reservoir with which the system interacts. Spontaneous emission can be modified in a 'tailored' manner by 
changing the density of modes of the reservoir [1]. An effective method to achieve this is to place atoms in 
waveguides [2-4], microcavities [5-10] or photonic band gap materials [11-18], where the density of modes 
differs substantially from that of the free space vacuum. The latter has also attracted attention for its potential 
for modifying the absorption and dispersion properties of a system [19]. 

In the above studies the typical scheme involves the interaction of a two-level atom with a reservoir with 
modified density of modes. Spontaneous emission of this two-level system differs considerably from the free 
space result and the usual Weisskopf-Wigner  exponential decay [20] is violated. In specific cases complete 
inhibition of spontaneous decay has even been predicted [12,13]. In addition to studies of two-level atoms, there 
are also investigations of multi-level atoms, where the spontaneous emission from an atomic transition in the 
modified reservoir influences the spontaneous emission of another atomic transition that interacts with the 
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normal free space vacuum [12,16,17]. It is schemes such as these that concerns us in this article. Specifically, 
we study two distinct multi-level atomic schemes where one transition is considered to decay spontaneously in a 
modified reservoir and the other decays to a normal free space vacuum. The main interest here is the existence 
of 'dark lines' (complete quenching of spontaneous emission for specific vacuum modes) in the spontaneous 
emission spectrum of the f ree  space transition due to the coupling of the other transition with the modified 
reservoir. We note that dark lines in spontaneous emission have been predicted in several laser driven schemes 
[21-24] and have been experimentally observed [25]. In this article we employ specific models for the modified 
reservoir density of modes, such as, for example, that which results from an isotropic photonic band gap model 
with (or without) defects. We show that dark lines appear in the spontaneous emission spectrum as a 
consequence of  the structure of the modified reservoir. 

This article is organized as follows: in the next section we consider a three-level, A-type atomic system, with 
one transition spontaneously decaying in the normal free space vacuum and the other transition decaying in a 
modified reservoir. We study the spontaneous emission spectrum of the free space transition for four different 
density of  modes of the modified reservoir and show that dark lines can occur in the spectrum due to the 
structure of  the modified reservoir. We note that John and Quang [12] have studied the same atomic system as 
us, using specifically the appropriate density of  modes obtained near the edge of  an isotropic photonic band gap 
[see Eq. (12)]. However, in their study they focussed on the phenomenon of dynamical splitting in the spectrum 
and not on the existence of  dark lines, which is the main phenomenon discussed in our article. Zeros and 
splittings in spectra should not be confused, although they relate to each other in the limit of strong coupling. In 
Section 3 we consider a laser-driven extension of  the previous system and show that dark lines can occur in this 
system, too. In this case the dark lines originate from either laser-induced or modified vacuum-induced 
mechanisms. Finally, we summarize our findings in Section 4. 

2. First case: A-type scheme 

We begin with the study of  the A-type scheme, shown in Fig. l(a). This system is similar to that used by 
Lewenstein et al. [3] and by John and Quang [12]. The atom is assumed to be initially in state 12). The transition 
12) ~ l l )  is taken to be near resonant with a modified reservoir (this will be later referred to as the 
non-Markovian reservoir), while the transition 12) ~ 10) is assumed to be occurring in free space (this will be 
later referred to as the Markovian reservoir). The spectrum of this latter transition is of central interest in this 
article. The Hamiltonian which describes the dynamics of  this system, in the interaction picture and the rotating 
wave approximation (RWA), is given by (we use units such that h = 1), 

H =  ~,gAe i~o,, o~,,,12)(01aa + ~g~e ~ ...... . .  '"12) ( l la~+H.c .  
A K 

(1) 

Here, g~ denotes the coupling of  the atom with the modified vacuum modes (K) and gA denotes the coupling of 
the atom with the free space vacuum modes (A). Both coupling strengths are taken to be real. The energy 
separations of the states are denoted by wi / = w i - wj and w, (w A) is the energy of  the K (A)-th reservoir mode. 

The description of the system is given using a probability amplitude approach. We proceed by expanding the 
wave function of  the system, at a specific time t, in terms of the 'bare '  state vectors such that 

I~#(t)) =b2( t )12 , {O})  + ~ba( t )10 ,{A})  + ~ b ~ ( t ) l l , { K } ) .  (2) 
A K 
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Fig. 1. The two systems under consideration. In (a) the thick dashed line denotes the coupling to the modified reservoir and the thin dashed 
line denotes the coupling to the Markovian reservoir. The same hold in (b), and in addition the solid line denotes the coupling by the laser 
field. 

Substituting Eqs. (1) and (2) into the time-dependent Schr6dinger equation we obtain 

ib2( t )  = EgAba( t )  e i(,o~ ,,,~,,),+ E g ~ b ~ ( t )  e i,,,~ o~,)t, 
A K 

i/~a(t) = gab2( t )e  i''°~ .... " ,  

ibm(t)  = g~ b2( t ) e  ~ ~ -  ~-~" 

(3) 

(4) 
(5) 
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We proceed by performing a formal time integration of Eqs. (4) and (5) and substitute the result into Eq. (3) to 
obtain the integro-differential equation 

b 2 ( t )  = -£'dt'b2(t' ) ~__.g~e i,o~ o,~,,,~, , ' )_ fotdt, b2(t ,) Y ' ~ g ~ . e  i(o,~ ,o2o,(, ,'/ 
A K 

(6) 

Because the reservoir with modes A is assumed to be Markovian, we can apply the usual Weisskopf-Wigner  
result [20] and obtain 

z..,6a ~g-'"20 i~% o~,,)~, , )=  6 ( t - t ' ) .  (7)  
A 

Note that the principal value term associated with the Lamb shift which should accompany the decay rate has 
been omitted in Eq. (7). This does not affect our the results, as we can assume that the Lamb shift is 
incorporated into the definition of our state energies. For the second summation in Eq. (6), the one associated 
with the modified reservoir modes, the above result is not applicable as the density of  modes of this reservoir is 
assumed to vary much quicker than that of free space. To tackle this problem, we define the following kernel 

K ( t -  t ' )  = ~ OK-- ~2e  -i(w~ oJ2,)(, t = g 3 / 2  fdow( ,o)e ~ . . . . .  ~,'~' "' 
K 

(8) 

which is calculated using the appropriate density of  modes p(~o) of  the modified reservoir. In Eq. (8), g 
denotes the coupling constant of  the atom to the non-Markovian reservoir. Using Eqs. (7) and (8) into Eq. (6) 
we obtain 

b2( t )  = - -~b2( t  ) - £ ' d t ' b 2 ( t ' ) K ( t - t '  ) . (9) 

The long time spontaneous emission spectrum in the Markovian reservoir is given by S(8 a) ~x [ba(t ~ ~c)] 2, 
with 6 A = co a - w20 [21,24]. We calculate ba(t --* 2) with the use of  the Laplace transform [26] of the equations 
of  motion. Using Eq. (4) and the final value theorem [26] we obtain the spontaneous emission spectrum as 
S(6 a) cz y]lim~ ~ i~ B2(s)] 2, where B2(s) is the Laplace transform of the atomic amplitudes b2(t) and s is the 
Laplace variable. This in turn, with the help of Eq. (9), reduces to 

Y 
S(8a)  c~ 1 -  i 6a + , / / 2  + / ~ (  s ~ - i6a)12 ' (10) 

where /~(s) is the Laplace transform of K(t),  which yields 

p(~o) (11) 
k ( s )  = g3/~- f d,o s + i( ~o - ~o2t ) 

Therefore, in order to calculate the spontaneous emission spectrum in the Markovian reservoir we need to 
calculate /~(s). This will be done for different models of the density of modes p(og) of  the non-Markovian 
reservoir. 
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We begin by considering the non-Markovian reservoir to be that obtained near the edge of an isotropic 
photonic band gap model [12,13]. Then, 

1 1 
p(og) 6)( o9 - o9o), (12) 

where Wg is the gap frequency and 6) is the Heaviside step function. In this case, Eq. (11) leads to 

g3/2 

/ £ ( ' )  ~/~' - 8 7  ' (13)  

with 8g = o g g  - °-)21- The spontaneous emission spectrum then reads 

"Y ~ - a  __ (~g 2 (14) 
+g3/2 

Obviously, the spectrum exhibits a zero (i.e. predicts the existence of a dark line), if 8 a = 8g. This is purely an 
effect of the above density of states, and the non-Markovian character of the reservoir. In the case of a 
Markovian reservoir the spontaneous emission spectrum would obtain the well-known Lorentzian profile and no 
dark line would appear in the spectrum. The behaviour of the spectrum is shown in Fig. 2 for different values of 
the detuning from the threshold. The spectrum has two well-separated peaks and the dark line appears at the 
predicted value. We note that a spectrum of this form has also been derived by John and Quang [12]; however, 
in their study they did not mention the existence of the dark line (i.e. the zero in the spectrum and its spectral 
position), which is of central importance in this article. 

The density of the modes of Eq. (12) is a special case of a more general family of density of modes those 
given by 

1  -o9g 
p(o9) 0 (  o9 - ogg), (15) 

"77" E "~- O9 - -  (.Og 

where e is usually referred to as the smoothing parameter. Such a density of modes has been used in studies of 
atoms in waveguides [2,3] microcavities [5,8] and photonic band gap materials [13]. Eq. (12) is recovered by 
taking the limit • --+ 0 in Eq. (15). For the above density of modes, Eq. (15) we obtain 

g3/2 
/~(s)  = i r e - +  ~ ' (16) 

S(6a) a . (17) 
( - i 6  a + y / 2 ) ( i v ~  + ~ )  + g3/2 

So, in this 'smoothed' case, no dark line appears in the spectrum. This is shown in Fig. 3, where the zero 
disappears from the spectrum. The only case for which spontaneous emission spectrum will give zero is that of 
• = 0 and 6 a = 6g which, of course, reduces to the previous result of Eq. (14). 

The above two density of modes describe 'pure'  materials (i.e. materials with no defects). In reality, defects 
exist in waveguides, microcavities or photonic band gap materials which exhibit gaps in their density of modes. 
These defects lead to narrow-linewidth, well-localized modes in the gaps of the above structures. Their density 
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Fig .  2. The spontaneous emission spectrum S(6 A) (in arbitrary units) given by Eq.  (14)  for parameters g = 1, a n d  6g = 0 (do t t ed  curve) ;  
6o = 1 ( d a s h e d  cu rve ) ;  6,, = - 1 ( ful l  cu rve ) .  Al l  parameters are in units of y .  

of modes can be described by either a delta function [11] or a narrow Lorentzian [13]. We will now combine the 
density of  modes given by Eq. (12) and that given by a defect structure. In the case that we choose a delta 
function density of  modes for the defect structure we obtain 

g3/2 g[ 
- s + i6~ 

( - i 8  a + y/Z)v/ '6  a - 6g + g3/2 + i g [  6a _ 6 ~  

(18) 

m 2, 
(19)  

where 6 c = wc - w2t is the defect mode-atom detuning (defect mode at frequency w c) and g~ is the defect 
mode-atom coupling constant. In this case the spectrum exhibits two dark lines one at 8 a = 8 8 and another at 
6 A = 6 c. In Fig. 4 we present the spontaneous emission spectrum described by Eq. (19) for the same parameters 

12/ 
0-4 -2 

i,I 
' ' 1 

'. \\ 
', \ \  

0 2 
Detuning 

Fig .  3. The spontaneous emission spectrum S(6 a) given by Eq.  (17)  for parameters g = 1, e = 0 .3 ,  a n d  6~ = 0 (do t t ed  cu rve ) ;  6, 5 = l 
(dashed curve ) ;  6~ = - 1 (ful l  cu rve ) .  
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Fig. 4. The spontaneous emission spectrum S(6 a) given by Eq. (19) for parameters g = 1, gl  = l, 8 c = - 2 ,  and 88 = 0 (dotted curve); 
8~ = I (dashed curve);  8g = - 1 (full curve).  

that used in Fig. 2. The spectrum obtains now a very pronounced third peak and two dark lines at the predicted 
values. For a Lorentzian density of  modes of  the defect structure we  get 

g3/2 g~ 

/ < ( s ) -  ~/is 8g + ' (20 )  - s + i S c + y c / 2  

s(~.) ~ y ~f6~- ~ ~- ~-- 8g 
( -i8~ + v/2)~ - ~ + g~/: + gf i(~ - s~) + v~/2 

( 2 1 )  

with Yc being the width of  the Lorentzian describing the defect mode.  As in the case of  the density of modes 
given by Eq. (12), in this case too, there is a single dark line in the spectrum at 8 A = 6g. However,  the behaviour 
of  the spectrum is quite different in this case compared to that shown in Fig. 2, as can be seen in Fig. 5. 
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F ig .  5 .  T h e  s p o n t a n e o u s  e m i s s i o n  s p e c t r u m  S ( S a )  g i v e n  b y  E q .  ( 2 1 )  f o r  p a r a m e t e r s  g = 1, g l  = 1, Yc = 1, 8~ = - 2 ,  a n d  88 = 0 ( d o t t e d  
c u r v e ) ;  8g = 1 ( d a s h e d  c u r v e ) ;  8~ = - I ( f u l l  c u r v e ) .  
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3. Second case: laser-driven scheme 

in this section we turn to the study of the laser-driven system shown in Fig. l(b). This system is composed of  
a ground state ]3) which is coupled by a laser field to the excited state 12). State [2) can spontaneously couple to 
either state 10) via interaction with a Markovian reservoir, or to state ]1) via interaction with a non-Markovian 
reservoir, as in the previous section. The spontaneous emission spectrum in the Markovian reservoir is our main 
concern in this section, too. The Hamiltonian of  this system, written in the interaction picture and under the 
RWA reads 

H =  S213) (2 le~ '  + }-"~ gae -i( . . . . . . .  )'12) (0la  a + Y[g~e -i~'°~ "2')q2) ( l la~ + H.c . .  (22) 
A K 

Here, g2 is the Rabi frequency (assumed real) and a = ~o - co23 the laser detuning, with o9 being the laser field 
angular frequency. For the description of this system too we use the probability amplitude approach and expand 
the wave function of  the system as 

I 4 ' ( t ) )  = b3(t)eiatl3,{O}) + b2(t)12,{0}) + Eba( t )10 ,{A})  + E b ~ ( t ) l l , { K } )  • (23) 
A K 

We substitute Eqs. (22) and (23) into the time-dependent Schrtidinger equation and apply the elimination of the 
vacuum modes outlined in the previous section to obtain 

ib3( t  ) = 6b3( t  ) + ~Qb2(t ) , 

i b2( t )  = f2b3( t )  - i---Y b2( t )  - i f t d t ' b , (  t') K(  t - t') 
2 0 " ' 

i/~a(t) = g a b z ( t ) e  i( % o, : , , ) t  , 

ibm(t) = g~ b2( t )e  i' ~% ~o ~,, 

(24) 

(25) 

(26) 

(27) 

The long time spontaneous emission spectrum in the Markovian reservoir is given by S(6 a) c¢ Iba(t ~ 2)12, 
and is calculated in a closed form with the use of the Laplace transform and the final value theorem [26] as 

Y ( ~  - 6 ) b 2 ( 0 )  + a ~  3(0) 2. 

s(a ) (a, - a) [7, 7 7 7 7- --71 - n :  (28) 

The spectrum depends, in this case too, from the Laplace transform of the kernel, which in turn depends on the 
density of  modes of  the modified reservoir [see Eq. (11)]. We use the four models of the density of modes 
described in the previous section to calculate the above spectrum. 

In the case of an isotropic photonic band gap material, with the use of Eq. (13) we find, 

T 
( a ~ -  a)b,_(O) + nb3(O ) 

S(6a) ot (29) 
( 6 a _ 8 ) ( S A + i y / 2 ) + i g 3 / 2  6 A - 6  .(22 

Let us assume first that the atom starts from its ground state, i.e. [b3(0)[ 2 = 1, I b 2 ( 0 ) [  2 = 0. Then, the spectrum 
obtains a dark line at 6 a = 6g, except in the case that 6 = 6g, so in the case that the laser detuning becomes 
equal to the detuning from the band edge no dark line occurs, if the system is initially in state 13). We note that 
in the case when the transition 12) --+ I1) occurs in a Markovian reservoir, then no dark line appears in the 
spectrum [21,24]. If now the atom starts in a superposition of  the ground ([3)) and excited states (12)) with real 
expansion coefficients [b,(0)] then two dark lines can appear in the spectrum. The first dark line appears at 
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F i g .  6.  The spontaneous emission spectrum S(6 A) given by E q .  ( 2 9 )  for parameters g = l ,  /2  = 1, 6 = - 1.5,  b 2 ( 0 )  : 1, a n d  68 : 0 (dotted 
c u r v e ) ;  #,~ = 1 (dashed curve); 8g = - 1 (full curve). All parameters are in units of y .  

6 A = 6 -  [ l b 3 ( O ) / b ~ _ ( O )  and is attributed to the laser-atom interaction [24]. The second dark line occurs at 
~A = 6~ and is attributed to the interaction with the non-Markovian reservoir. In this case too, the second dark 
line disappears if 6 = 6g. The behaviour of  the above spectrum for the case that the system is initially in state 
12> is shown in Fig. 6. We have chosen 6g 4= 6 therefore, as predicted, two dark lines appears in the spectrum. 
We note the similarity of  this spectrum and that of  Fig. 4. This should be expected as the delta function density 
of  modes (used in Fig. 4) represents a pure Jaynes-Cummings interaction [27]. 

If the more general, smoothed density of  states of Eq. (15) is used (with e 4= 0), the spontaneous emission 
spectrum is given by 

Y 
S( ~)  cx ( 6~- 6)b2(0 ) + nb3(O ) 

aA - 8  _122  " (6  A -  6 ) ( 6  A + iT/2) + i g 3/2 i¢-e + Vaa~- 6g 
(30) 

Then, in the case that the atom starts in the ground state no dark line exists in the spectrum. However, if the 
atom starts in a superposition of  the ground and excited states (with real expansion coefficients) the 
laser-induced dark line appears at the same frequency as before, i.e. at 6 A = 6 - 1 7 b 3 ( O ) / b z ( O ) .  This is verified 
in Fig. 7, where only a single dark line appears in the spectrum at 6 A = 6, as b3(0) = 0. 
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F i g .  7.  The spontaneous emission spectrum S(6~) given by Eq.  ( 3 0 )  for parameters g = 1, • = 0 .3 ,  ,O = 1, 6 = - 1.5,  b 2 ( 0 )  = 1, a n d  6g = 0 
(dotted curve); 6g = l ( d a s h e d  c u r v e ) ;  &g = - 1 ( fu l l  c u r v e ) .  
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F i g .  8. The spontaneous emission spectrum S(6 a) given by Eq .  ( 3 1 )  for parameters g = 1, g l  = 1, 6 c = - 2 . 5 ,  ~ = 1, 6 = - 1.5, b 2 ( 0 ) :  1, 
and 8g = 0 (dotted curve); 8g = 1 (dashed curve); 8~ = - 1 (full curve). 

In the case of  an isotropic photonic band gap with a defect with delta function density of modes then the 
spectrum reads 

~' ( 6~ - 8)bz(O) + n b 3 ( O )  2. (31)  

s(aj  a -8 a -6 n 2 ( 6 a - 6 ) ( S a  + i y / 2 )  +ig3/21/aa_8------ 7 g~ 6 a _  6c 

and one obtains, in general, two dark lines if the atom starts from the ground state, one at 6 a = 6g and the other 
at 8 a = 6 c. Any of  these dark lines can disappear if either 6 = 6g, or 6 = 6 c so the spectrum exhibits only one 
dark line in this case. If now the atom starts in a superposition of  the ground ([3>) and excited states (]2>) with 
real expansion coefficients then a third dark line can appear in the spectrum at 6 a = 8 -  ~2b3(O)/b2(O). The 
spectrum for the case that the atom is initially in the excited state [2> (as in the previous cases), is displayed in 
Fig. 8. A very rich behaviour of  the spectrum is found. The spectrum now has three dark lines at the predicted 
values and four different peaks can be seen. 
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Fig. 9. The  spontaneous  e m i s s i o n  spectrum S ( 6  A) g iven  by  Eq. (32)  for  parameters g = 1, gl  = 1, Tc = 1, 6 c = - 2 . 5 ,  ~ = 1, 8 = - 1.5, 
b2(0)  = 1, and 6g = 0 (dotted curve); 3g = 1 (dashed curve); 8~ = - 1 (full  curve).  
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Finally, in 
spectrum gets the form, 

3 

Y ( 6  A -  6 ) ( 6  A + i T / 2 )  + i g  3/2 

( 6  A -  6 ) b 2 ( 0  ) + a b 3 ( O  ) 
- - 8 _ ' 

+ i g ~ i ( 6  c - 6A) + % / 2  

the case of an isotropic photonic band gap with a defect with Lorentzian density of modes the 

(32) 

The dark lines in the spectrum appear at the same frequencies as those of the simple isotropic photonic band gap 
model, discussed above. However, the shape of the spectrum in this case differs from that of Fig. 6 as it is 
shown in Fig. 9. 

4. Summary 

In this article we have investigated the spontaneous emission properties of two distinct atomic models with 
one transition coupling to a Markovian reservoir while another transition coupling to a non-Markovian reservoir. 
Of specific interest to us were the existence of dark lines in the Markovian spontaneous emission spectrum. We 
have shown that dark lines can occur if the non-Markovian reservoir is described by certain densities of modes. 
In the case of the laser-driven scheme of Fig. l(b) laser-induced dark lines can co-exist with non-Markovian 
reservoir-induced dark lines. Overall, spontaneous emission in the Markovian transition can be efficiently 
controlled (and even suppressed) by appropriately engineering the density of modes of the non-Markovian 
reservoir. 
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